Optimal adaptive estimation of the relative density - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2014

Optimal adaptive estimation of the relative density

Gaëlle Chagny
Claire Lacour

Résumé

This paper deals with the classical statistical problem of comparing the probability distribution of two real random variables $X$ and $X_0$, from a double independent sample. While most of the usual tools are based on the cumulative distribution function $F$ and $F_0$ of the variables, we focus on the relative density, a function recently used in two-sample problems, and defined as the density of the variable $F_0(X)$. We provide a nonparametric adaptive strategy to estimate the target function. An estimator is selected in a collection of projection estimate, with a criterion in the spirit of the Goldenshluger-Lepski methodology. We show the optimality of the procedure both in the oracle and the minimax sense: the convergence rate for the risk computed from an oracle inequality matches with the lower bound, that we also derived. Finally, some simulations illustrate the method.
Fichier principal
Vignette du fichier
RDArticleNew.pdf (621.44 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00955161 , version 1 (04-03-2014)
hal-00955161 , version 2 (14-11-2014)

Identifiants

  • HAL Id : hal-00955161 , version 1

Citer

Gaëlle Chagny, Claire Lacour. Optimal adaptive estimation of the relative density. 2014. ⟨hal-00955161v1⟩
327 Consultations
380 Téléchargements

Partager

More