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OPTIMAL ADAPTIVE ESTIMATION OF THE RELATIVE DENSITY

GAËLLE CHAGNY(A) AND CLAIRE LACOUR(B)

Abstract. This paper deals with the classical statistical problem of comparing the probability
distribution of two real random variables X and X0, from a double independent sample. While
most of the usual tools are based on the cumulative distribution function F and F0 of the
variables, we focus on the relative density, a function recently used in two-sample problems, and
de�ned as the density of the variable F0(X). We provide a nonparametric adaptive strategy
to estimate the target function. An estimator is selected in a collection of projection estimate,
with a criterion in the spirit of the Goldenshluger-Lepski methodology. We show the optimality
of the procedure both in the oracle and the minimax sense: the convergence rate for the risk
computed from an oracle inequality matches with the lower bound, that we also derived. Finally,
some simulations illustrate the method.

Keywords: Adaptive estimation, model selection, relative density, two-sample problem.

AMS Subject Classi�cation 2010: 62G05; 62G07; 62G30.

1. Introduction

1.1. Statistical model. The study of di�erences among groups is the main challenge of two-
sample problems, and statistical methods are required to do this in various �elds (biology or social
research for example). Nonparametric inference procedures are well-developed for comparing
samples coming from two populations, modeled by two real random variables X0 and X. Most
of the methods are based on the comparison of the cumulative distribution functions (c.d.f. in
the sequel) F0 and F of X0 and X respectively. The study of the relative density r of X with
respect to X0 is quite recent. Assume that f0, the density of X0, is de�ned on an interval A0

and does not vanish on it. Denote by F−1
0 the inverse of F0. The relative density is de�ned as

the density of the variable F0(X) and can be expressed as

(1) r(x) =
f ◦ F−1

0 (x)

f0 ◦ F−1
0 (x)

, x ∈ F0(A),

where ◦ is the composition symbol, f is a density of X, de�ned on an interval A ⊂ R. In the
present work, we focus on the optimal adaptive estimation of this function (in the oracle and
minimax senses), from two independent samples (Xi)i∈{1,...,n} and (X0,i0)i0∈{1,...,n0} of variables
X and X0.

1.2. Motivation. The most classical nonparametric methods to tackle the initial issue of the
comparison of F and F0 are statistical tests such as Kolmogorov and Smirnov, Wilcoxon, or Mann
and Whitney tests, which all propose to check the null hypothesis of equal c.d.f.. Probability
plotting tools such as quantile-quantile plots, whose functional form is x 7→ F−1

0 (F (x)), are also
commonly considered. However, the representation of the quantiles of one distribution versus
the quantiles of the other may be questionable. For example, Holmgren (1995) showed that it
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2 G. CHAGNY AND C. LACOUR

does not enable scale-invariant comparisons of treatment e�ects and that it depends on outliers.
Some authors have thus been interested by an alternative, the probability-probability plot, a
graph of the percentiles of one distribution versus the percentiles of the other (see among all
Li et al. 1996). The functional form can be written x 7→ F (F−1

0 (x)), which de�nes the relative
c.d.f., a function closely related to the Receiver Operating Characteristic (ROC) curve: the
latter is x 7→ 1 − F (F−1

0 (1 − x)). This curve is well-known in �elds such as signal detection
and diagnostic test for example. Both the relative c.d.f. and the ROC curve are based on the
following transformation of the data: to compare X to X0, consider F0(X), a variable known
in the literature as the grade transformation or most commonly as the relative transformation.
Its c.d.f. is the relative c.d.f. de�ned above. The basic idea is to look at the rank that a
comparison value (that is a value of X) would have in the reference group (that is in the values
of the sample of X0). To recover from a double-sample the ROC curve or the relative c.d.f. in a
nonparametric way, two types of strategies have mainly been studied: estimators based on the
empirical c.d.f. of X and X0 (see Hsieh and Turnbull 1996a,b and references therein), as well as
kernel smoothers (see among all Lloyd 1998; Lloyd and Yong 1999; Hall and Hyndman 2003 for
the ROC curve, Gastwirth 1968; Hsieh 1995; Handcock and Morris 1999 for the relative c.d.f.).
Conditional version of the previous strategies have also been studied (see the review provided by
Pardo-Fernández et al. 2013). These two functions are based on the c.d.f. F and F0 of the two
variables to compare.

Nevertheless, focusing on their densities is likely to provide more precised and visual details.
That is why the present work addresses the problem of comparison through the estimation of
the relative density (1), which is the derivative of the relative c.d.f., and thus a density of the
variable F0(X). Graphically more informative than the ROC curve (see the introduction of
Molanes-López and Cao 2008b), another reason for the choice of the relative density is that
an estimate of this function is required to study the asymptotic variance of any ROC curve
estimator, and thus to build con�dence regions based on it (see the references above, and also
Claeskens et al. 2003). Moreover, some summary measures for the comparison of X and X0 are
based on the relative density r: the most classical example is the Kullback-Leibler divergence
which can be recovered by the plug-in of an estimate of r (Mielniczuk, 1992; Handcock and
Morris, 1999). But there exist other measures that can pertain to the relative density, such as
the Gini separation measurement and some discriminant rules (Gijbels and Mielniczuk, 1995),
Lorenz curves and the median polarization index (Handcock and Morris, 1999). It is also possible
to build goodness-of-�t tests from the relative density, see Kim (2000).

However, not many investigations are concerned with theoretical results for the estimation of
the relative density, and most of the references are sociological ones. A clear account is provided
by Handcock and Janssen (2002). Early mathematical references for the relative density are
Bell and Doksum (1966) and Silverman (1978), who approached the problem with the maximum
likelihood point of view. A kernel estimate was �rst proposed by �wik and Mielniczuk (1993), and
modi�ed by Molanes-López and Cao (2008a) who proved asymptotic developments for the Mean
Integrated Squared Error (MISE), under the assumption that r is twice continuously derivable.
The problem of bandwidth selection is also addressed, but few theoretical results are proved for
the estimators with the selected parameters, to the best of our knowledge. The question has also
been studied in a semiparametric setting (see Cheng and Chu 2004 and references therein). If
the relative density can also be brought closer to the density-ratio, for which numerous studies
are available (see Sugiyama et al. 2012 for a review), some authors have noticed that the relative
distribution leads to smoother and more stable results (Yamada et al., 2013). Our work is the
�rst to study a nonparametric projection method in this setting, and provide a detailed optimal
study of an adaptive estimator.

ha
l-0

09
55

16
1,

 v
er

si
on

 1
 - 

4 
M

ar
 2

01
4



OPTIMAL ADAPTIVE ESTIMATION OF THE RELATIVE DENSITY 3

1.3. Contribution and overview. We build in this paper a new estimator of the relative
density, and derive both non-asymptotic and asymptotic theoretical results. A collection of
projection estimators on linear models is built in Section 2, and the quadratic risk is studied:
the upper-bound is non-trivial, and requires non-straightforward splittings. We obtain a bias-
variance decomposition which permits to understand what we can expect at best from adaptive
estimation, which is the subject of Section 3: the model selection is automatically performed in
the spirit of the Goldenshluger-Lepski method in a data-driven way (Goldenshluger and Lepski,
2011). Contrary to kernel methods, the projection method makes possible to obtain an unbiased
estimate when the target function belongs to one of the approximation spaces. In the relative
density estimation setting, this can occur if the two variables X and X0 have the same distri-
bution, and if the constant functions are included in one of the models (which will be the case).
The resulting estimator is shown to be optimal in the collection, but also, from an asymptotic
point of view, among all possible estimators for a large class of regular relative density. To be
more precise, an oracle-type inequality �rst proves that adaptation has no cost (Section 3.2):
the estimator achieves the same performance as the one which would have been selected if the
regularity index of the target function has been known. The choice of the quadratic risk permits
to use the Hilbert structure and thus the standard model selection tools (mainly concentration
inequalities) even if our selection criterion is based on the Goldenshluger-Lepski methodology.
Rates of convergence are deduced, for functions r belonging to Besov balls: we obtain the non-
parametric rate (n−1 + n−1

0 )2α/(2α+1), where α is the smoothness index of r. These rates are
also shown to be optimal: a lower bound for the minimax risk is established (Section 3.3). Such
results are new for this estimation problem. Especially, no assumption about a link between the
sample sizes n and n0 is required, and the regularity assumptions are not restrictive. Section 4
provides a brief discussion of some practical issues via simulations. An appendix (Section A) is
available with further reconstructions and risk computations. Finally, the proofs are gathered in
Section 5.

2. The collection of projection estimators

For the sake of clarity, we assume that the variables X and X0 have the same support:
A = A0. Hence, F0(A) = (0; 1) is the estimation interval. This assumption is natural to compare
the distribution of X to the one of X0.

2.1. Approximation spaces. We denote by L2((0; 1)), the space of square integrable functions
on (0; 1), equipped with its usual Hilbert structure: 〈., .〉 is the scalar product, and ‖.‖ the
associated norm. The relative density r, de�ned by (1) and estimated on its de�nition set (0; 1)
is assumed to belong to L2((0; 1)). Our estimation method is based on this device: we consider
a family Sm, m ∈ M of �nite dimensional subspaces of L2((0; 1)) and compute a collection
of estimators (r̂m)m∈M, where, for all m, r̂m belongs to Sm. In a second step a data driven
procedure chooses among the collection the �nal estimator r̂m̂.

Here, simple projection trigonometric spaces are considered: the set Sm is linearly spanned by
ϕ1, . . . , ϕ2m+1, with

ϕ1(x) = 1, ϕ2j(x) =
√

2 cos(2πjx), ϕ2j+1(x) =
√

2 sin(2πjx), , x ∈ (0; 1).

We set Dm = 2m + 1, the dimension of Sm, and M = {1, 2, . . . , bmin(n, n0)/2c − 1}, the
collection of indices, whose cardinality depends on the two sample-sizes. The largest space in
the collection has maximal dimension Dmmax , which is subject to constraints appearing later.
We focus on the trigonometric basis mainly for its simplicity to be handled. It is also used for
a lot of other nonparametric estimation problems, by several authors (see e.g. Efromovich 1999
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4 G. CHAGNY AND C. LACOUR

among all). Moreover, the presence of a constant function (namely ϕ1) in the basis is perfectly
well-adapted to the relative density estimation context, see Section 4.2 below. The method may
however probably be extended to other projection spaces, thanks to di�erent "tricks" in the
computations.

2.2. Estimation on a �xed model. For each index m ∈ M, we de�ne an estimator for the
orthogonal projection rm =

∑Dm
j=1 ajϕj of r onto the model Sm, where aj = 〈ϕj , r〉. First notice

that

(2) E [ϕj(F0(X))] =

∫
A
ϕj ◦ F0(x)f(x)dx =

∫
F0(A)

ϕj(u)
f ◦ F−1

0 (u)

f0 ◦ F−1
0 (u)

du = 〈ϕj , r〉 = aj ,

with the change of variables u = F0(X), and keeping in mind that F0(A) = (0; 1). Thus, the
following function suits well to estimate rm:

(3) r̂m(x) =

Dm∑
j=1

âjϕj(x), with âj =
1

n

n∑
i=1

ϕj

(
F̂0(Xi)

)
,

and where F̂0 is the empirical c.d.f. of the sample (X0,i0)i0=1,...,n0 , that is

F̂0 : x 7→ 1

n0

n0∑
i0=1

1X0,i0
≤x.

Note that in the �toy� case of known c.d.f. F0, the procedure amounts to estimate a density : r̂m
is the classical density projection estimator (adapted to the estimation of the density of F0(X)).

Remark 1. It is useful to point out that r̂m de�ned in (3) can also be seen as a minimum of
contrast estimate: r̂m = arg inft∈Sm γn(t, F̂0), m ∈M, with

γn(t, F̂0) = ‖t‖2 − 2

n

n∑
i=1

t ◦ F̂0(Xi).

2.3. Risk of a projection estimator. The global squared error is the natural criterion associ-
ated to the projection estimation procedure. First consider the toy case of known c.d.f. F0. The
Pythagoras theorem simply leads to the classical bias-variance decomposition:

(4) ‖r − r̂m‖2 = ‖r − rm‖2 + ‖r̂m − rm‖2 .
Moreover, the variance term can be easily bounded, still with known F0, and using the property
of the trigonometric basis:

(5) E
[
‖r̂m − rm‖2

]
=

Dm∑
j=1

Var (âj) ≤
1

n

Dm∑
j=1

E
[
ϕ2
j (F0(X1))

]
=
Dm

n
.

The challenge in the general case comes from the plug-in of the empirical F̂0. It seems natural but
involves non straightforward computations. This is why the proof of the following upper-bound
for the risk is postponed to Section 5.

Proposition 1. Assume that the relative density r is continuously di�erentiable on (0; 1). As-

sume also that Dm ≤ κn
1/3
0 , for a constant κ > 0. Then, there exist two constants c1 and c2

such that,

E
[
‖r̂m − r‖2

]
≤ 3 ‖r − rm‖2 +

(
3
Dm

n
+ c1‖r‖2

Dm

n0

)
+ c2

(
1

n
+

1

n0

)
.(6)

The constants c1 and c2 do not depend on n, n0 and m. Moreover, c1 also does not depend on r.
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OPTIMAL ADAPTIVE ESTIMATION OF THE RELATIVE DENSITY 5

The assumption on the model dimension Dm comes from the control of the deviations between
F̂0 and F0. Proposition 1 shows that the risk is divided into three terms: a squared-bias term, a
variance term (proportional to Dm(n−1 + n−1

0 )) and a remainder (proportional to (n−1 + n−1
0 )).

The upper bound of (1) is non trivial, and the proof requires tricky approximations (see Section
5.2 e.g.).

2.4. Rates of convergence on Besov balls. The result (6) also gives the asymptotic rate
for an estimator if we consider that r belongs to a Besov ball Bα

p,∞((0; 1), L) of radius L (p a
nonnegative integer, L > 0, α > 0), for the Besov norm ‖.‖α,p on the Besov space Bαp,∞((0; 1)).
For a precise de�nition of those notions, we refer to DeVore and Lorentz (1993), Chapter 2,
Section 7, where it is also proved that Bαp,∞((0; 1)) ⊂ Bα2,∞((0; 1)) for p ≥ 2. This justi�es that
we now restrict to Bα2,∞((0; 1)). The following rate is obtained.

Corollary 1. Assume that the relative density r belongs to the Besov ball Bα
2,∞((0; 1), L), for

L > 0, and α ≥ 1. Choose a model mn,n0 such that Dmn,n0
= C(n−1 +n−1

0 )−1/(2α+1), for C > 0.

Then, under the assumptions of Proposition 1, there exists a numerical constant C ′ such that

E
[∥∥r̂mn,n0 − r∥∥2

]
≤ C ′

(
1

n
+

1

n0

) 2α
2α+1

.

This inequality is a straightforward consequence of the result of DeVore and Lorentz (1993) and
of Lemma 12 of Barron et al. (1999), which imply that the bias term ‖r − rm‖2 is of order
D−2α
m . The minimum of the right-hand side term of (6) can thus be computed, leading to

Corollary 1. Nevertheless, it is worth noticing that the rate depends on the two sample sizes n
and n0. Heuristically, it is (min(n, n0))−2α/(2α+1). The rate we obtain is new in nonparametric
estimation, but it is not surprising. Actually, it looks like the Kolmogorov-Smirnov two-sample
test convergence result: it is well-known that the test statistic rate is

√
nn0/(n+ n0) (see for

example Doob 1949). More recently, similar rates have been obtained in adaptive minimax
testing (see e.g. Butucea and Tribouley (2006)).

Remark 2. The regularity condition α ≥ 1 ensures that there exists a dimension Dmn,n0
which

satis�es Dm ≤ Cn
1/3
0 while being of order (n−1 + n−1

0 )−1/(2α+1). When α < 1, this choice
remains possible and the convergence rate is preserved under the additional assumption n ≤
n0/(n

(2−2α)/3
0 − 1). Roughly, this condition means that n ≤ n

(2α+1)/3
0 < n0, and thus n and n0

must be put in order to handle this case.

It follows from Corollary 1 that the optimal dimension depends on the unknown regularity α
of the function to be estimated. The aim is to perform an adaptive selection only based on the
data.

3. Adaptive optimal estimation

3.1. Model selection. Consider the collection (Sm)m∈M of models de�ned in Section 2.1 and
the collection (r̂m)m∈M of estimators de�ned by (3). The aim is to propose a data driven
choice of m leading to an estimator with risk near of the squared-bias/variance compromize
(see (6)). The selection combines two strategies: the model selection device performed with a
penalization of the contrast (see e.g. Barron et al. 1999), and the recent Goldenshluger-Lepski
method (Goldenshluger and Lepski, 2011). A similar device has already been used in Comte and
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6 G. CHAGNY AND C. LACOUR

Johannes (2012), Bertin et al. (2013) and Chagny (2013). We set, for every index m,

(7)
V (m) = c0

(
Dm

n
+ ‖r‖2Dm

n0

)
,

A(m) = max
m′∈M

(
‖r̂m′ − r̂m∧m′‖2 − V (m′)

)
+
,

where m ∧m′ is the minimum between m and m′, (x)+ the maximum between x and 0 (for a
real number x), and c0 a tuning parameter. The quantity V must be understood as a penalty
term, and A is an approximation of the squared-bias term (see Lemma 11). The estimator of r
is now given by r̂m̂, with

m̂ = argminm∈M{A(m) + V (m)}.
By construction, the choice of the index m, and hence the estimator r̂m̂ does not depend on the
regularity assumption on the relative density r.

3.2. Optimality in the oracle sense. A non-asymptotic upper-bound is derived for the risk
of the estimator r̂m̂.

Theorem 2. Assume that the relative density r is continuously di�erentiable on (0; 1). Assume

also that Dm ≤ κn1/3
0 / ln2/3(n0), for a constant κ > 0. Then, there exist two constants c and C

such that

E
[
‖r̂m̂ − r‖2

]
≤ c min

m∈M

{(
Dm

n
+ ‖r‖2Dm

n0

)
+ ‖rm − r‖2

}
+ C

(
1

n
+

1

n0

)
.(8)

The constant c is purely numerical, while C depends on r, but neither on n nor n0.

Theorem 2 establishes the optimality of the selection rule in the oracle sense. For every index
m ∈M, {(Dm/n+‖r‖2Dm/n0)+‖rm−r‖2} has the same order as E

[
‖r̂m − r‖2

]
(see Proposition

1). Thus, Inequality (8) indicates that up to a multiplicative constant, the estimator r̂m̂ converges
as fast as the best estimator in the collection. The proof of such result is based on the following
scheme: we �rst come down to the case of a known c.d.f. F0, by using deviation results for the
empirical c.d.f. Then, we use concentration results for empirical processes to prove that A(m)
de�ned in (7) is a good estimate of the bias term.

The following corollary states the convergence rate of the risk over Besov balls. Since the
regularity parameter de�ning the functional class is not supposed to be known to select the
estimator r̂m̂, it is an adaptation result: the estimator adapts to the unknown regularity α of
the function r.

Corollary 2. Assume that the relative density r belongs to Bα
2,∞((0; 1), L), for L > 0, and α ≥ 1.

Under the assumptions of Theorem 2,

E
[
‖r̂m̂ − r‖2

]
≤ C

(
1

n
+

1

n0

) 2α
2α+1

.

It is worth noticing that the rate of convergence computed above (that is the one of the best
estimator among the collection, see Corollary 1), is automatically achieved by the estimator r̂m̂.
Corollary 2 is established with regularity assumptions stated on the target function r only. To
the best of our knowledge, in the previous works, convergence results for selected relative density
estimators (among a family of kernel ones) depended on strong assumptions on r (r ∈ C6((0; 1))
e.g.) but also on the regularity of f0.

ha
l-0

09
55

16
1,

 v
er

si
on

 1
 - 

4 
M

ar
 2

01
4



OPTIMAL ADAPTIVE ESTIMATION OF THE RELATIVE DENSITY 7

The penalty term V given in (7) cannot be used in practice, since it depends on the unknown
quantity ‖r‖2. A solution is to replace it by an estimator, and to prove that the estimator of
r built with this random penalty keeps the adaptation property. To that aim, set, for an index
m∗ ∈M,

(9)
Ṽ (m) = c0

(
Dm

n
+ 4‖r̂m∗‖2

Dm

n0

)
,

Ã(m) = max
m′∈M

(
‖r̂m′ − r̂m∧m′‖2 − Ṽ (m′)

)
+
,

and m̃ = argminm∈M{Ã(m) + Ṽ (m)}. The result for r̂m̃ is described in the following theorem.

Theorem 3. Assume that the assumptions of Theorem 2 are satis�ed, and that r belongs to

Bα
2,∞((0; 1), L), for L > 0, and α ≥ 1. Choose m∗ in the de�nition of Ṽ such that Dm∗ ≥ ln(n0)

and Dm∗ = O(n1/4/ ln1/4(n)). Then, for n0 large enough, there exist two constants c and C such
that,

E
[
‖r̂m̃ − r‖2

]
≤ c min

m∈M

{(
Dm

n
+ ‖r‖2Dm

n0

)
+ ‖rm − r‖2

}
+ C

(
1

n
+

1

n0

)
.

As for Theorem 2, the result proves that the selection rule leads to the best trade-o� between
a bias and a variance term. Our estimation procedure is thus optimal in the oracle sense.
The convergence rates derived in Corollary 2 remains valid for r̂m̃. Now, the only remainding
parameter to tune is the constant c0 involved in the de�nition of Ṽ . A value is obtained in the
proof, but it is quite rough and useless in practice. A sharp bound seems di�cult to obtain
from a theoretical point of view: obtaining minimal penalties is still a di�cult problem (see e.g.
Birgé and Massart 2007), and this question could be the subject of a full paper. Therefore, we
experiment the tuning by a simulation study over various models.

3.3. Optimality in the minimax sense. Until now, we have drawn conclusions about the
performance of the selected estimators r̂m̂ or r̂m̃ within the collection (r̂m)m∈M of projection
estimators. A natural question follows: is the convergence rate obtained in Corollary 2 optimal
among all the possible estimation strategies? We prove that the answer is yes by establishing the
following lower bound for the minimax risk of the relative density estimation problem, without
making any assumption.

Theorem 4. Let Fα be the set of relative density functions on (0; 1) which belong to the Besov
ball Bα

2,∞((0; 1), L), for a �xed radius L > 1, and for α ≥ 1. Then there exists a constant c > 0

which depends on (α,L) such that

(10) inf
r̂n,n0

sup
r∈Fα

E
[
‖r̂n,n0 − r‖

2
]
≥ c

(
1

n
+

1

n0

)2α/(2α+1)

,

where the in�mum is taken over all possible estimators r̂n,n0 obtained with the two data samples
(Xi)i∈{1,...,n} and (X0,i0)i0∈{1,...,n0}.

The optimal convergence rate is thus (n−1 + n−1
0 )2α/(2α+1). The upper-bound of Corollary 2

and the lower bound (10) match, up to constants. This proves that our estimation procedure
achieves the minimax rate and is thus also optimal in the minimax sense. The result is not
straightforward: the proof requires speci�c constructions, since it captures the in�uence of both
sample sizes, n and n0. Although it is a lower bound for a kind of density function, we think it
can not be easily deduced from the minimax rate of density estimation over Besov ball (see for
example Kerkyacharian and Picard 1992), since the two samples do not have symmetric roles.
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8 G. CHAGNY AND C. LACOUR

4. Simulation

In this section, we present the performance of the estimator r̂m̃ on simulated data. We have
carried out an intensive simulation study. After describing the way we compute the estimator,
two types of questions are discussed, to evaluate the robustness of our method. First, we focus
on the quality of estimation when the variable X is close (in distribution) to X0. Second, we
investigate the role of the two sample sizes, n and n0. For additional reconstruction and risk
computations, the reader may refer to the appendix (Section A).

4.1. Implementation. The implementation of the estimator is very simple, and follows the
steps below.

• For each m ∈ M, compute (r̂m(xk))k=1,...,K de�ned by (3) for grid points (xk)k=1,...,K

evenly distributed across (0; 1), with K = 50.
• For each m ∈M, compute Ṽ (m) and Ã(m), de�ned by (9).

� For Ṽ (h). We choose c0 = 1.5, but the estimation results seem quite robust to slight
changes. The index m∗ of the estimator r̂m∗ used in Ṽ is the smallest integer greater
than ln(n0)− 1.

� For Ã(h). We approximate the L2 norms by the corresponding Riemann sums
computed over the grid points (xk)k:

‖r̂m′ − r̂m∧m′‖2 ≈
1

K

K∑
k=1

(r̂m′(xk)− r̂m∧m′(xk))2 .

• Select the argmin m̃ of Ã(m) + Ṽ (m), and choose r̂m̃.

The risks E[‖(r̂m̃)+ − r‖2] are also computed: it is not di�cult to see that the choice of the
positive part of the estimator can only make its risk decreases. To compute the expectation, we
average the integrated squared error (ISE) computed with N = 500 replications of the samples
(X0,i0)i0 and (Xi)i. Notice that the grid size (K = 50), and the number of replications (N = 500)
are the same as �wik and Mielniczuk (1993).

4.2. Experiment 1 - Two samples with close distributions. The trigonometric basis suits
well to recover relative densities. Indeed, the �rst function of the basis is ϕ1 : x ∈ (0; 1) 7→ 1, and
thus the �rst estimated coe�cient â1 in (3) also equals 1. But we know that the relative density
is constant equal to 1 over (0; 1) when X and X0 have the same distribution. Consequently,
our procedure permits to obtain an exact estimation in this case, provided that the data driven
criterion leads to the choice of the �rst model in the collection. We hope to select Dm̂ = 1, that
is m̂ = 0. In this section, we check that the estimation procedure actually easily handle this
case.

First, we generate two samples (X0,i0)i0=1,...,n0 and (Xi)i=1,...,n coming from random variables
X0 and X respectively, with one of the following common probability distributions (Example
(1) in the sequel): (a1) a uniform distribution in the set (0; 1), (b1) a beta distribution B(2, 5),
(c1) a Gaussian distribution with mean 0 and variance 1, (d1) an exponential distribution with
mean 1/5. As explained, the estimator is expected to be constant equal to 1: the selected index
m must thus be 0. This is the case for most of the samples we simulate: for example, only 1%
of the 500 estimators computed with 50 i.i.d. Gaussian pairs (X,X0) are not identically equal
to 1. The medians of the ISE over 500 replicated samples are always equal to 0, whatever the
distribution of X and X0, chosen among the examples (uniform, beta, Gaussian, or exponential).
The MISE are dispayed in Table 1, for di�erent possible sample sizes. We can also check that
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OPTIMAL ADAPTIVE ESTIMATION OF THE RELATIVE DENSITY 9

HH
HHHHn

n0 50 100 200 400

50 0.0018 0.0056 0.0073 0.0046
100 0.0011 0.0032 0.0025 0.0017
200 0.0011 0.0011 0.0014 0.0006
400 0 0.0010 0.0007 0.0004

Example (a1)

HH
HHHHn

n0 50 100 200 400

50 0.0034 0.0042 0.0018 0.0035
100 0.0005 0.0020 0.0011 0.0015
200 0.0009 0.0008 0.0011 0.0022
400 0.0005 0.0009 0.0013 0.0009

Example (b1)

H
HHH

HHn
n0 50 100 200 400

50 0.0021 0.0018 0.0035 0.0047
100 0.0015 0.0014 0.0016 0.0010
200 0.0004 0.0018 0.0016 0.0019
400 0.0023 0.0023 0.0005 0.0013

Example (c1)

H
HHH

HHn
n0 50 100 200 400

50 0.0038 0.0015 0.0041 0
100 0.0008 0.0028 0.0023 0.0016
200 0.0017 0.0012 0.0009 0.0012
400 0.0012 0.0011 0.0009 0.0008

Example (d1)

Table 1. Values of MISE averaged over 500 samples for the estimator r̂m̃, in Example

(1) ((a1) to (d1)).

they are much more smaller than the MISE obtained with two di�erent distributions for X and
X0 (see Table 4 in Appendix, Section A).

Then, we investigate what happens when X is close to X0 but slightly di�erent, with samples
simulated from the set of Example (2).

(a2) The variable X0 is from the uniform distribution on (0; 1), and the variable X has the
density f(x) = c1(0;0.5)(x) + (2− c)1(0.5;1)(x), with c ∈ {1.01, 1.05, 1.1, 1.3, 1.5} (the case
c1 = 1 is the case of the uniform distribution on (0; 1)).

(b2) The variable X0 is from the beta distribution B(2, 5), and the variable X from a beta
distribution B(a, 5) with a ∈ {2.01, 2.05, 2.1, 2.3, 2.5}. For this example, the risks are
computed over a regular grid of the interval [F0(0.01);F0(0.99)].

Figure 1 shows the true relative densities for these two examples.
The MISEs in Examples (2) (a2) and (b2) are plotted in Figure 2 with respect to the sample

sizes n = n0. Details are also given in Table 3 (Appendix, Section A). The larger c (resp. a),
the further X from X0 the larger the MISE. The results are thus better especially when the two
variable distributions are close.

4.3. Experiment 2 - In�uence of the two sample sizes. We now study the in�uence of
the two sample sizes. Recall that the theoretical results we obtain do not require any link
between n and n0. On the contrary, they are often supposed to be proportional in the literature.
But we obtain a convergence rate in which n and n0 play symmetric roles (see Corollary 2).
What happens in practice? To brie�y discuss this question, let us consider the observations of
(Xi)i∈{1,...,n} and (X0,i0)i0∈{1,...,n0} �tting the following model (Example 3). The variable X0 is
from the Weibull distribution with parameters (2,3) (we denote by W the corresponding c.d.f.)
and X is built such that X = W−1(S), with S a mixture of two beta distributions: B(14, 37)
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10 G. CHAGNY AND C. LACOUR

Example (a2) Example (b2)

Figure 1. Plot of the di�erents investigated relative densities of Examples (2),
(a2) and (b2).

Example (a2) Example (b2)

Figure 2. MISE with respect to the sample sizes n = n0 in Examples (2) (a2)
and (b2).

with probability 4/5 and B(14, 20) with probability 1/5. The example is borrowed from Molanes-
López and Cao (2008a). Let us look at the beams of estimates r̂m̃: in Figure 3, 10 estimators
built from i.i.d. samples of data are plotted together with the true functions. This illustrates that
increasing n0 for �xed n seems to improve more substantially the risk than the other way round
(the improvement when n0 increases appears horizontally in Figure 3). Such a phenomenon also
appears when a more quantitative criterion is considered: the MISE in Table 2 are not symmetric
with respect to n and n0, even if, as expected, they all get smaller when the sample sizes n and n0

increase. Even if this can be suprising when comparing with the theory, recall that the relative
density of X with respect to X0 is not the same than the relative density of X0 with respect to
X. The role of the reference variable is coherently more important, even if it is not clear in the
convergence rate of Corollary 2. The details of the computation in the proofs also show that n
and n0 do not play similar roles (see e.g. Lemma 10). An explanation may be the following:
in the method, the sample (Xi)i∈{1,...,n} is used in a nonparametric way, like in classical density
estimation, while the other, that is (X0,i0)i0∈{1,...,n0} is usefull through the empirical c.d.f. which
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OPTIMAL ADAPTIVE ESTIMATION OF THE RELATIVE DENSITY 11

n = 500 and n0 = 500 n = 500 and n0 = 5000 n = 500 and n0 = 10000

n = 5000 and n0 = 500 n = 5000 and n0 = 5000 n = 5000 and n0 = 10000

n = 10000 and n0 = 500 n = 10000 and n0 = 5000 n = 10000 and n0 = 10000

Figure 3. Beams of 10 estimators built from i.i.d. samples of various sizes
(n;n0) (thin lines) versus true function (thick line) in Example (3)(a3) .

H
HHH

HHn
n0 50 100 200 400

50 1.2313 0.8564 0.5358 0.4151
100 1.1737 0.7826 0.4892 0.3613
200 1.0919 0.7586 0.4379 0.2876
400 1.1359 0.7180 0.4486 0.2823

Table 2. Values of MISE averaged over 500 samples for the estimator r̂m̃, in Example (3).

is known to be convergent at a parametric rate, faster than the previous one. Notice �nally that
the same results are obtained for estimators computed from the sets of observations described
in the Appendix (see Table 4). In any case, such results might be used by a practitioner, when
the choice of the reference sample is not natural: a judicious way to decide which of the sample
which play the role of (X0,i0) is to choose the larger one.

ha
l-0

09
55

16
1,

 v
er

si
on

 1
 - 

4 
M

ar
 2

01
4



12 G. CHAGNY AND C. LACOUR

5. Proofs

5.1. Preliminary notations and results.

5.1.1. Notations. We need additional notations in this section. First, we specify the de�nition
of the procedure. The estimators r̂m, m ∈ M de�ned by (3) are now denoted by r̂m(., F̂0). Its

coe�cients in the Fourier basis are âF̂0
j . When we plug F0 in (3), we denote it by r̂m(., F0), and the

coe�cients by âF0
j . Then, we set U0,i0 = F0(X0,i0) (i0 = 1, . . . , n0), and let Û0 be the empirical

c.d.f. associated to the sample (U0,i0)i0=1,...,n0 . We also denote by E[.|(X0)] the conditional
expectation given the sample (X0,i0)i0=1,...,n0 (the conditional variance will be coherently denoted
by Var(.|(X0))).

Finally, for any measurable function t de�ned on (0; 1), we denote by ‖t‖∞ the quantity
supx∈(0;1) |t(x)|, and id is the function such that u 7→ u, on the interval (0; 1).

5.1.2. Useful tools. Key arguments for the proofs are the deviations properties of the empirical
c.d.f. F̂0 of the sample (X0,i0)i0 .

First, recall that U0,i0 is a uniform variable on (0; 1) and that F̂0(F−1
0 (u)) = Û0(u), for

all u ∈ (0; 1). Keep in mind that the random variable supx∈A0
|F̂0(x) − F0(x)| has the same

distribution as ‖Û0 − id‖∞. The following inequalities are used several times to control the
deviations of the empirical c.d.f Ûn. Dvoretzky et al. (1956) established the �rst one.

Proposition 5. (Dvoretzky-Kiefer-Wolfowitz's Inequality) There exist a constant C > 0, such
that, for any integer n0 ≥ 1 and any λ > 0,

P
(∥∥∥Û0 − id

∥∥∥
∞
≥ λ

)
≤ C exp

(
−2n0λ

2
)
.

By integration, we then deduce a �rst other bound:

Proposition 6. For any integer p > 0, there exists a constant Cp > 0 such that

E
[∥∥∥Û0 − id

∥∥∥p
∞

]
≤ Cp

n
p/2
0

.

More precise bounds are also required:

Corollary 3. For any κ > 0, for any integer p ≥ 2, there exists also a constant C such that

(11) E

[(∥∥∥Û0 − id
∥∥∥p
∞
− κ lnp/2(n0)

n
p/2
0

)
+

]
≤ Cn−2

2−p
p κ2/p

0 .

5.1.3. The Talagrand Inequality. The proofs of the main results (Theorems 2 and 3) are based
on the use of concentration inequalities. The �rst one is the following version of the Talagrand
Inequality.

Proposition 7. Let ξ1, . . . , ξn be i.i.d. random variables, and de�ne νn(s) = 1
n

∑n
i=1 s(ξi) −

E[s(ξi)], for s belonging to a countable class S of real-valued measurable functions. Then, for
δ > 0, there exist three constants cl, l = 1, 2, 3, such that

E

[(
sup
s∈S

(νn (s))2 − c(δ)H2

)
+

]
≤ c1

{
v

n
exp

(
−c2δ

nH2

v

)
(12)

+
M2

1

C2(δ)n2
exp

(
−c3C(δ)

√
δ
nH

M1

)}
,
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OPTIMAL ADAPTIVE ESTIMATION OF THE RELATIVE DENSITY 13

with C(δ) = (
√

1 + δ − 1) ∧ 1, c(δ) = 2(1 + 2δ) and

sup
s∈S
‖s‖∞ ≤M1, E

[
sup
s∈S
|νn(s)|

]
≤ H, and sup

s∈S
Var (s (ξ1)) ≤ v.

Inequality (12) is a classical consequence of Talagrand's Inequality given in Klein and Rio
(2005): see for example Lemma 5 (page 812) in Lacour (2008). Using density arguments, we can
apply it to the unit sphere of a �nite dimensional linear space.

The second one is the classical Bernstein Inequality, see for instance Proposition 2.9 and its
comments in Massart (2007):

Proposition 8. Let (Zi)i=1,...,n be independent real-valued random variables. Assume that their
exist some positive number v and b such that

n∑
i=1

E
[
(Zi)

2
]
≤ v and, ∀i ∈ {1, . . . , n}, Zi ≤ b.

Then, for every positive u,

P

(
1

n

n∑
i=1

(Zi − E [Zi]) ≥
√

2
v

n
u+

b

3
u

)
≤ exp(−nu).

5.2. Proof of Proposition 1. A key point is the following decomposition which holds for any
index m ∥∥∥r̂m(., F̂0)− r

∥∥∥2
≤ 3Tm1 + 3Tm2 + 3 ‖r̂m(., F0)− r‖2 ,

with

(13)
Tm1 =

∥∥∥r̂m(., F̂0)− r̂m(., F0)− E
[
r̂m(., F̂0)− r̂m(., F0) |(X0)

]∥∥∥2
,

Tm2 =
∥∥∥E [r̂m(., F̂0)− r̂m(., F0) |(X0)

]∥∥∥2
.

We have already proved (see (4) and (5)) that ‖r̂m(., F0)− r‖2 ≤ Dm/n+ ‖rm − r‖2. Therefore,
it remains to apply the two following lemmas, proved in the two following sections.

Lemma 9. Under the assumptions of Proposition 1,

E [Tm1 ] ≤ 2π2D
3
m

nn0

Lemma 10. Under the assumptions of Proposition 1, ,

E [Tm2 ] ≤ 3‖r‖2Dm

n0
+ 3

π4

4
C4‖r‖2

D4
m

n2
0

+
32π6C6

3
‖r‖2D

7
m

n3
0

+ 3
‖r′‖2

n0
.

The result follows if Dm ≤ κn1/3
0 .

2

5.2.1. Proof of Lemma 9. The decompositions of the estimator in the orthogonal basis (ϕj)j
yields

Tm1 =

Dm∑
j=1

(
âF̂0
j − â

F0
j − E

[
âF̂0
j − â

F0
j |(X0)

])2
,
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14 G. CHAGNY AND C. LACOUR

and therefore, E[Tm1 |(X0)] =
∑Dm

j=1 Var(â
F̂0
j − â

F0
j |(X0)). Moreover, for any index j,

Var
(
âF̂0
j − â

F0
j |(X0)

)
≤ 1

n
E
[(
ϕj ◦ F̂0(X1)− ϕj ◦ F0(X1)

)2
|(X0)

]
,

≤ 1

n

∥∥ϕ′j∥∥2

∞

∫
A

(
F̂0(x)− F0(x)

)2
f(x)dx,

by using the mean-value theorem. Since ‖ϕ′j‖2∞ ≤ 8π2D2
m in the Fourier basis, this leads to

E [Tm1 ] ≤ 8π2

n
D3
m

∫
A
E
[(
F̂0(x)− F0(x)

)2
]
f(x)dx.

Notice �nally that E[(F̂0(x) − F0(x))2] = Var(F̂0(x)) = (F0(x)(1 − F0(x)))/n0 ≤ 1/(4n0). This
permits to conclude the proof of Lemma 9.

2

5.2.2. Proof of Lemma 10. Arguing as in the beginning of the proof of Lemma 9 yields

Tm2 =

Dm∑
j=1

(∫
A

(
ϕj ◦ F̂0(x)− ϕj ◦ F0(x)

)
f(x)dx

)2

.(14)

We apply the Taylor formula to the function ϕj , with the Lagrange form for the remainder. There
exists a random number α̂j,n0,x such that the following decomposition holds: Tm2 ≤ 3Tm2,1+3Tm2,2+
3Tm2,3, where

Tm2,1 =

Dm∑
j=1

(∫
A
ϕ′j(F0(x))

(
F̂0(x)− F0(x)

)
f(x)dx

)2

,

Tm2,2 =

Dm∑
j=1

∫
A
ϕ′′j (F0(x))

(
F̂0(x)− F0(x)

)2

2
f(x)dx


2

,

Tm2,3 =

Dm∑
j=1

∫
A
ϕ

(3)
j (α̂j,n0,x)

(
F̂0(x)− F0(x)

)3

6
f(x)dx


2

.

We now bound each of these three terms. Let us begin with Tm2,1. The change of variables
u = F0(x) permits to obtain �rst

Tm2,1 =

Dm∑
j=1

(∫
(0;1)

ϕ′j(u)
(
Û0(u)− u

)
r(u)du

)2

,

and, with the de�nition of Û0(u), we get

Tm2,1 =

Dm∑
j=1

(
1

n0

n0∑
i=1

Bi,j − E[Bi,j ]

)2

, with Bi,j =

∫ 1

U0,i

r(u)ϕ′j(u)du.
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OPTIMAL ADAPTIVE ESTIMATION OF THE RELATIVE DENSITY 15

An integration by parts for Bi,j leads to another splitting Tm2,1 ≤ 2Tm2,1,1 + 2Tm2,1,2, with notations

Tm2,1,1 =

Dm∑
j=1

{
1

n0

n0∑
i=1

r(U0,i)ϕj(U0,i)− E [r(U0,i)ϕj(U0,i)]

}2

,

Tm2,1,2 =

Dm∑
j=1

{∫
(0;1)

r′(u)
(
Û0(u)− u

)
ϕj(u)du

}2

.

The expectation of the �rst term is a variance and is bounded as follows:

E
[
Tm2,1,1

]
≤ 1

n0

Dm∑
j=1

E
[
(r(U0,1)ϕj(U0,1))2

]
≤
∫ 1

0
r(u)2du

Dm

n0
.

For Tm2,1,2, we use the de�nitions and properties of the orthogonal projection operator ΠSm on
the space Sm:

Tm2,1,2 =

Dm∑
j=1

(
〈r′(Û0 − id), ϕj〉(0;1)

)2
=
∥∥∥ΠSm(r′(Û0 − id))

∥∥∥2
,

≤
∥∥∥r′(Û0 − id)

∥∥∥2
≤ ‖r′‖2‖Û0 − id‖2∞.

Applying Proposition 6 proves that E[Tm2,1,2] ≤ C2‖r′‖2/n0. Therefore,

(15) E
[
Tm2,1

]
≤ ‖r‖2Dm

n0
+ C2‖r′‖2

1

n0
.

Consider now Tm2,2. The trigonometric basis satis�es ϕ′′j = −(πµj)
2ϕj , with µj = j for even

j ≥ 2, and µj = j − 1 for odd j ≥ 2. We thus have,

E
[
Tm2,2

]
= (π4/4)E

Dm∑
j=1

{∫
(0;1)

r(u)
(
Û0(u)− u

)2
µ2
jϕj(u)du

}2
 ,

≤ (π4/4)D4
mE

Dm∑
j=1

{
〈r
(
Û0 − id

)2
, ϕj〉(0;1)

}2
 ,

≤ (π4/4)D4
mE

[∥∥∥∥r (Û0 − id
)2
∥∥∥∥2
]
≤ (π4/4)D4

mE
[∥∥∥Û0 − id

∥∥∥4

∞

] ∫
(0;1)

r2(u)du.

Thanks to Proposition 6, we obtain

(16) E
[
Tm2,1

]
≤ C4(π4/4)‖r‖2D

4
m

n2
0

.

The last term is then easily controlled, using also Proposition 6:

E
[
Tm2,3

]
≤ 32π6

9

Dm∑
j=1

‖r‖2E
[∥∥∥Û0 − id

∥∥∥6

∞

]
≤ 32π6C6

9
‖r‖2D

7
m

n3
0

.(17)

Lemma 10 is proved by gathering (15), (16) and (17).

2
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16 G. CHAGNY AND C. LACOUR

5.3. Proof of Theorem 2. In the proof, C is a constant which may change from line to line,
and is independent of all m ∈M, n, and n0. Let m ∈M be �xed. The following decomposition
holds: ∥∥∥r̂m̂ (., F̂0

)
− r
∥∥∥2
≤ 3

∥∥∥r̂m̂ (., F̂0

)
− r̂m∧m̂

(
., F̂0

)∥∥∥2

+3
∥∥∥r̂m∧m̂ (., F̂0

)
− r̂m

(
., F̂0

)∥∥∥2
+ 3

∥∥∥r̂m (., F̂0

)
− r
∥∥∥2
.

We use successively the de�nition of A(m̂), A(m), and m̂ to obtain∥∥∥r̂m̂ (., F̂0

)
− r
∥∥∥2
≤ 6 (A(m) + V (m)) + 3

∥∥∥r̂m (., F̂0

)
− r
∥∥∥2
.

Keeping in mind that we can split ‖r̂m(., F̂0) − r‖2 ≤ 3Tm1 + 3Tm2 + 3‖r̂m(., F0) − r‖2 with the
notations of Section 5.2, we derive from (4) and (5):∥∥∥r̂m̂ (., F̂0

)
− r
∥∥∥2
≤ 6 (A(m) + V (m)) + 9Tm1 + 9Tm2 + 9

Dm

n
+ 9 ‖rm − r‖2 .

We also apply Lemmas 9 and 10. Taking into account that Dm ≤ κn1/3
0 , we thus have

E
[∥∥∥r̂m̂ (., F̂0

)
− r
∥∥∥2
]
≤ 6E [A(m)] + 6V (m) + C

Dm

n
+ C‖r‖2Dm

n0

+9 ‖rm − r‖2 +
C

n0
+
C

n
.

Therefore, the conclusion of Theorem 2 is the result of the following lemma.

Lemma 11. Under the assumptions of Theorem 2, there exists a constant C > 0 such that, for
any m ∈M,

E [A(m)] ≤ C
(

1

n
+

1

n0

)
+ 12 ‖rm − r‖2 .

2

5.3.1. Proof of Lemma 11. To study A(m, F̂0), we write, for m′ ∈M.∥∥∥r̂m′ (., F̂0

)
− r̂m∧m′

(
., F̂0

)∥∥∥2
≤ 3

∥∥∥r̂m′ (., F̂0

)
− rm′

∥∥∥2
+ 3 ‖rm′ − rm∧m′‖2

+3
∥∥∥rm∧m′ − r̂m∧m′ (., F̂0

)∥∥∥2
.

Let S(pm′) be the set {t ∈ Spm′ , ‖t‖ = 1}, for pm′ = m′ or pm′ = m ∧m′ . We note that

(18)
∥∥∥rpm′ − r̂pm′ (., F̂0)

∥∥∥2
=

Dpm′∑
j=1

(ν̃n(ϕj))
2 = sup

t∈S(pm′ )
ν̃n(t)2,

with ν̃n(t) = n−1
∑n

i=1 t ◦ F̂0(Xi)−E[t ◦ F0(Xi)]. Since the empirical process ν̃n is not centered,
we consider the following splitting: (ν̃n(t))2 ≤ 2ν2

n(t) + 2((1/n)
∑n

i=1(t ◦ F̂0(Xi)− t ◦ F0(Xi)))
2,

with

(19) νn(t) =
1

n

n∑
i=1

(t ◦ F0(Xi)− E [t ◦ F0(Xi)]) .
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OPTIMAL ADAPTIVE ESTIMATION OF THE RELATIVE DENSITY 17

But we also have

sup
t∈S(pm′ )

(
1

n

n∑
i=1

(
t ◦ F̂0(Xi)− t ◦ F0(Xi)

))2

=

Dpm′∑
j=1

(
âF̂0
j − â

F0
j

)2
≤ 2T

pm′
1 + 2T

pm′
2 ,

with the notations of Section 5.2. This shows that

(20)
∥∥∥rpm′ − r̂pm′ (., F̂0)

∥∥∥2
≤ 2 sup

t∈S(pm′ )
(νn(t))2 + 4T

pm′
1 + 4T

pm′
2 .

We thus have∥∥∥r̂m′ (., F̂0

)
− r̂m∧m′

(
., F̂0

)∥∥∥2
≤ 6 sup

t∈S(m′)
(νn(t))2 + 6 sup

t∈S(m∧m′)
(νn(t))2 + 12Tm

′
2 + 12Tm∧m

′
2

+12Tm
′

1 + 12Tm∧m
′

1 + 3 ‖rm′ − rm∧m′‖2 .
We get back to the de�nition of A(m). To do so, we subtract V (m′). For convenience, we split
it into two terms: V (m′) = V (1)(m′) + V (2)(m′), with V (1)(m′) = c0Dm/n, and V (2)(m′) =
c0‖r‖2Dm/n0. Thus,

E [A (m)] ≤ 6E

[
max
m′∈M

(
sup

t∈S(m′)
(νn(t))2 − V (1)(m′)

12

)
+

]
+ 3 max

m′∈M
‖rm′ − rm∧m′‖2

+6E

[
max
m′∈M

(
sup

t∈S(m∧m′)
(νn(t))2 − V (1)(m′)

12

)
+

]
+ 12E

[
max
m′∈M

(
Tm

′
2 − V (2)(m′)

24

)
+

]

+12E

[
max
m′∈M

(
Tm∧m

′
2 − V (2)(m′)

24

)
+

]
+ 12E

[
max
m′∈M

Tm
′

1

]
+ 12E

[
max
m′∈M

Tm∧m
′

1

]
.

For the deterministic term, we notice that

max
m′∈M

‖rm′ − rm∧m′‖2 ≤ 2 max
m′∈M
m≤m′

‖rm′ − r‖2 + 2 ‖r − rm‖2 .

If m ≤ m′, the spaces are nested Sm ⊂ Sm′ , thus the orthogonal projections rm and rm′ of r
onto Sm and S′m respectively satisfy ‖rm′ − r‖2 ≤ ‖rm − r‖2. Thus,

max
m′∈M

‖rm′ − rm∧m′‖2 ≤ 4 ‖rm − r‖2 .(21)

Moreover, for pm′ = m′ or pm′ = m∧m′, T pm′1 ≤ Tmmax
1 (recall that mmax is the largest index in

the collectionM). Therefore,

12E
[

max
m′∈M

Tm
′

1

]
+ 12E

[
max
m′∈M

Tm∧m
′

1

]
≤ 24E [Tmmax

1 ] ≤ C
D3
mmax

nn0
≤ C

n
.

Consequently, we have at this stage

E [A (m)] ≤ C

n
+ 12 ‖rm − r‖2 + 6E

[
max
m′∈M

(
sup

t∈S(m′)
(νn(t))2 − V (1)(m′)

12

)
+

]

+6E

[
max
m′∈M

(
sup

t∈S(m∧m′)
(νn(t))2 − V (1)(m′)

12

)
+

]

+12E

[
max
m′∈M

(
Tm

′
2 − V (2)(m′)

24

)
+

]
+ 12E

[
max
m′∈M

(
Tm∧m

′
2 − V (2)(m′)

24

)
+

]
.
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18 G. CHAGNY AND C. LACOUR

Since V (l)(m′) ≥ V (l)(m′ ∧m) it remains to bound the two following terms:

E

[
max
m′∈M

(
sup

t∈S(pm′ )
(νn(t))2 − V (1)(pm′)

12

)
+

]
and E

[
max
m′∈M

(
T
pm′
2 − V (2)(pm′)

24

)
+

]
We use the two following lemmas, which are proved below.

Lemma 12. Assume that r is bounded on (0; 1). The deviations of the empirical process νn
de�ned by (19) can be controlled as follows,

∀δ > 0, E

[
max
m′∈M

{
sup

t∈S(pm′ )
ν2
n(t)− V̄δ(pm′)

}
+

]
≤ C(δ)

n
,

where V̄δ(pm′) = 2(1 + 2δ)Dpm′/n, and C(δ) a constant which depends on δ.

We �x a δ > 0 (e.g. δ = 1/2). We choose c0 in the de�nition of V (see (7)) large enough
to have V (1)(pm′)/12 ≥ V̄δ(pm′), for every m′. The inequality of Lemma 12 with V (1)(pm′) as a
replacement for V̄δ(pm′).

Lemma 13. Under the assumptions of Theorem 2,

E
[

max
m′∈M

(
T
pm′
2 − V2(pm′)

)
+

]
≤ C

n0
,

with V2(pm′) = c2‖r‖2Dp′m/n0, c2 a positive constant large enough, and C depending on the basis,
on r, and on the constants Cp of Proposition 6.

We choose c0 in the de�nition of V (see (7)) large enough to have V (2)(pm′)/24 ≥ V2(pm′), for
every m′. This enables to apply Lemma 13 with V (2)(pm′) as a replacement for V2(pm′).

The proof of Lemma 11 is completed.

2

5.3.2. Proof of Lemma 12. We roughly bound

E

[
max
m′∈M

{
sup

t∈S(pm′ )
ν2
n(t)− V̄δ(pm′)

}
+

]
≤
∑
m′∈M

E

[{
sup

t∈S(pm′ )
ν2
n(t)− V̄δ(pm′)

}
+

]
.

We apply the Talagrand Inequality recalled in Proposition 7. To this aim, we compute M1, H2

and v. Write for a moment νn(t) = (1/n)
∑n

i=1 ψt(Xi)− E[ψt(Xi)], with ψt(x) = t ◦ F0(x).

• First, for t ∈ S(pm′), supx∈A |ψt(x)| ≤ ‖t‖∞ ≤
√
Dpm′‖t‖ =

√
Dpm′ =: M1.

• Next, we develop t ∈ S(pm′) in the orthogonal basis (ϕj)j=1,...,Dpm′
. This leads to

E

[
sup

t∈S(pm′ )
ν2
n(t)

]
≤

Dpm′∑
j=1

E
[
νn(ϕ2

j )
]

=

Dpm′∑
j=1

E
[(
âF0
j − aj

)2
]
≤
Dpm′

n
=: H2,

thanks to the upper-bound for the variance term (see (5)).
• Last, for t ∈ S(pm′), Var(ψt(X1)) ≤

∫
A t

2(F0(x))f(x)dx =
∫

(0;1) t
2(u)r(u)du ≤ ‖r‖∞‖t‖2 =

‖r‖∞ =: v.
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OPTIMAL ADAPTIVE ESTIMATION OF THE RELATIVE DENSITY 19

Inequality (12) gives, for δ > 0,∑
m′∈M

E

[(
sup

t∈S(pm′ )
ν2
n(t)− c(δ)H2

)
+

]
≤ c1

∑
m′∈M

{
1

n
exp

(
−c2δDpm′

)
+

Dpm′

C2(δ)n2
exp

(
−c3C(δ)

√
δ
√
n
)}

,

where cl, l = 1, 2, 3 are three constants. Now, it is su�cient to use that Dp′m = 2pm′ + 1, and
that the cardinal ofM is bounded by n to end the proof of Lemma 12.

5.3.3. Proof of Lemma 13. The proof is based on the proof of Lemma 10, Section 5.2.2. Let us
abbreviate pm′ by p. We proceed as in this proof and obtain T p2 ≤ 6T p2,1,1 +6T p2,1,2 +3T p2,2 +3T p2,3.
Thus,

E
[

max
m′∈M

(T p2 − V2(p))+

]
≤ E

[
max
m′∈M

(
6T p2,1,1 − V2(p)/3

)
+

]
+ E

[
max
m′∈M

6T p2,1,2

]
(22)

+E
[

max
m′∈M

(
3T p2,2 − V2(p)/3

)
+

]
+E

[
max
m′∈M

(
3T p2,3 − V2(p)/3

)
+

]
.

We do not subtract V (p) to one of the term, since we immediately derive from Section 5.2.2

(23) E
[

max
m′∈M

6T p2,1,2

]
≤ E

[
6Tmmax

2,1,2

]
≤ 6C2‖r′‖2/n0.

For the term depending on T p2,1,1, note that T
p
2,1,1 =

∑Dp
j=1(νbn0

(ϕj))
2, with

νbn0
(t) =

1

n0

n0∑
i0=1

ψt(X0,i0)− E [ψt(X0,i)] , with ψt(x) = r(F0(x))t(F0(x)).

We proceed as in (18) to write T p2,1,1 = supt∈S(p)(ν
b
n0

(t))2. We anew apply the Talagrand In-

equality (Proposition 7). We easily compute M1 = ‖r‖∞
√
Dp, and v = ‖r‖2∞. For H2, the same

computations as in Lemma 10 give

E

[
sup
t∈S(p)

(
νbn0

(t)
)2
]

= E
[
T p2,1,1

]
≤ ‖r‖2Dp

n0
:= H2.

The result is the following, with V2,1,1(p) = 6× 2(1 + 2δ)‖r‖2Dp/n0, δ > 0,

(24) E
[

max
m′∈M

(
6T p2,1,1 − V2,1,1(p)

)
+

]
≤ C

n0
.

For the term in which T p2,2 is involved, we begin with

E
[

max
m′∈M

(
3T p2,2 −

V2(p)

3

)
+

]
≤
∑
m′∈M

E
[(

3T p2,2 −
V2(p)

3

)
+

]
,

and compute the right-hand side, for a �xed index p. We prove in Section 5.2.2 that T p2,2 ≤
(π4/4)‖r‖2D4

p‖Û0 − id‖4∞. Corollary 3 with p = 4 gives, for all κ > 0,

E

[(∥∥∥Û0 − id
∥∥∥4

∞
− κ ln2(n0)

n2
0

)
+

]
≤ Cn

− 1√
2
κ1/2

0 .

ha
l-0

09
55

16
1,

 v
er

si
on

 1
 - 

4 
M

ar
 2

01
4



20 G. CHAGNY AND C. LACOUR

Therefore, denoting by V2,2(p) = (3π4/4)‖r‖2κD
4
p ln2(n0)

n2
0

,

(25) E
[

max
m′∈M

(
3T p2,2 − V2,2(p)

)
+

]
≤ C

∑
m′∈M

D4
pn
− 1√

2
κ1/2

0 .

But we roughly bound
∑

m′∈MD4
p ≤ D5

mmax
≤ n5

0. The right-hand side of (25) is thus bounded

by Cn
5−
√
κ/2

0 , with c a constant, and this last bound is smaller than C/n0 if κ is large enough.

Since we assume Dp ≤ n1/3
0 / ln2/3(n), we have V2,2(p) ≤ V bis

2,2 (p) = (3π4/4)‖r‖2κDp/n0, and (25)
is still true with V2,2 replaced by V bis

2,2 .

We proceed similarly for the term which depends on T p2,3. We see in Section 5.2.2 that T p2,3 ≤
(32π6/9)‖r‖2D7

p‖Û0 − id‖6∞, and thanks to Corollary 3 with p = 6

E

[(∥∥∥Û0 − id
∥∥∥6

∞
− κ ln3(n0)

n3
0

)
+

]
≤ Cn

− 1

21/3
κ2/3

0 .

Thus, for V2,3(p) = (32π6/9)‖r‖2κD7
p ln3(n0)/n3

0,

(26) E
[

max
m′∈M

(
3T p2,3 − V2,3(p)

)
+

]
≤ C

∑
m′∈M

D4
pn
− 1

21/3
κ2/3

0 .

If κ is large enough, the right-hand side of (26) is bounded by C/n0, and V2,3 can be replaced

by an upper-bound, if Dp ≤ n1/3
0 / ln1/2(n): V2,3(p) ≤ V bis

2,3 (p) = (32π6/9)‖r‖2κDp/n0.

We gather (23), (24), (25), and (26) in Inequality (22), and choose V2(p) with form c2‖r‖2Dp/n0

for c2 large enough.

2

5.4. Proof of Theorem 3. We introduce the set

Λ =

{∣∣∣∣∣‖r̂m∗(., F̂0)‖
‖r‖

− 1

∣∣∣∣∣ < 1

2

}
,

and split

E
[
‖r̂m̃(., F̂0)− r‖2

]
= E

[
‖r̂m̃(., F̂0)− r‖21Λ

]
+ E

[
‖r̂m̃(., F̂0)− r‖21Λc

]
.

We show in the sequel that the �rst term give the order of the upper-bound of Theorem 3, and
that the probability of the set Λc is negligible compared to 1/n+ 1/n0.

•Upper-bound for E[‖r̂m̂(., F̂0)−r‖21Λ]. Arguing as in Section 5.3, we �rst obtain, form ∈M∥∥∥r̂m̃ (., F̂0

)
− r
∥∥∥2
≤ 6

(
Ã(m) + Ṽ (m)

)
+ 3

∥∥∥r̂m (., F̂0

)
− r
∥∥∥2
.

Moreover, Ã(m) ≤ A(m) + maxm′∈M(V (m′)− Ṽ (m′))+. Thus∥∥∥r̂m̃ (., F̂0

)
− r
∥∥∥2
≤ 6 (A(m) + V (m)) + 3

∥∥∥r̂m (., F̂0

)
− r
∥∥∥2
,

+ max
m′∈M

(
V (m′)− Ṽ (m′)

)
+

+ 6
(
Ṽ (m)− V (m)

)
.

For every m ∈M,

Ṽ (m)− V (m) = c0
Dm

n0

(
4‖r̂m∗(., F̂0)‖2 − ‖r‖2

)
.
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OPTIMAL ADAPTIVE ESTIMATION OF THE RELATIVE DENSITY 21

On the set Λ, since ‖r‖ < 2‖r̂m∗(., F̂0)‖, we thus have (V (m′) − Ṽ (m′))+ = 0. On this set, we
also have : ‖r̂m∗(., F̂0)‖ ≤ (3/2)‖r‖,(

Ṽ (m)− V (m)
)
≤ c0

Dm

n0

(
4× 9

4
‖r‖2 − ‖r‖2

)
= 8c0‖r‖2

Dm

n0
.

Using also Lemma 11 enables to conclude

E
[∥∥∥r̂m̃(., F̂0)− r

∥∥∥2
1Λ

]
≤ min

m∈M

{
Dm

n
+ ‖r‖2Dm

n0
+ 15 ‖rm − r‖2

}
+
C

n
+
C

n0
.

• Upper-bound for E[‖r̂m̃(., F̂0) − r‖21Λc ]. First, ‖r̂m̃(., F̂0) − r‖2 ≤ 2‖r̂m̃(., F̂0)‖2 + 2‖r‖2,
and ∥∥∥r̂m̃(., F̂0)

∥∥∥2
=

Dm̃∑
j=1

(
âF̂0
j

)2
≤

Dm̃∑
j=1

∥∥ϕ2
j

∥∥
∞ ≤ Dm̃ ≤ min(n, n0).

Thus
E
[
‖r̃m̃(., F̂0)− r‖21Λc

]
≤ P (Λc) 2

(
min(n, n0) + 2‖r‖2

)
.

It remains to bound P(Λc). We split

P(Λc) ≤ 1{‖r−rm∗‖≥ ‖r‖4 } + P
(
‖rm∗ − r̂m∗(., F̂0)‖ ≥ ‖r‖

4

)
.

Recall that r belongs to the Besov ball Bα
2,∞((0; 1), L), and that Dm∗ ≥ ln(n0). Hence, ‖r −

rm∗‖ ≤ CD−αm∗ ≤ C(ln(n0))−α. This quantity goes to 0 when n0 goes to +∞. Therefore,
C(ln(n0))−α ≤ ‖r‖/4 for n0 large enough. Consequently,

(27) 1{‖r−rm∗‖≥ ‖r‖4 } = 0.

Thanks to (20), we also have

P
(
‖rm∗ − r̂m∗(., F̂0)‖2 ≥ ‖r‖

2

16

)
≤ P

(
sup

t∈S(m∗)
(νn(t))2 ≥ ‖r‖2

3× 16

)

+P
(

4Tm
∗

1 ≥ ‖r‖2

3× 16

)
+ P

(
4Tm

∗
2 ≥ ‖r‖2

3× 16

)
,

with νn de�ned by (19) and Tm
∗

1 , Tm
∗

2 by (13). We use (14), and the mean-value theorem to
obtain, Tm

∗
2 ≤ 8π2D3

m∗‖Û0 − id‖2∞. Thus

P
(

4Tm
∗

2 ≥ ‖r‖2

3× 16

)
≤ P

(∥∥∥Û0 − id
∥∥∥2

∞
≥ ‖r‖2

192D3
m∗ × 8π2

)
,

≤ C exp

(
−n0

‖r‖2

768π2D3
m∗

)
.

by applying Proposition 5. Since D3
m∗ ≤ n0/ ln2(n0), we have

P
(

4Tm
∗

2 ≥ ‖r‖2

3× 16

)
≤ C exp

(
− ‖r‖

2

768π2
(ln(n0))2

)
.(28)

The same arguments permit to bound the term in which Tm
∗

1 is involved. We �rst note that
Tm

∗
1 ≤ 32π2D3

m∗ supx∈R |F̂0(x)− F0(x)|2 and conclude with Proposition 5:

(29) P
(

4Tm
∗

1 ≥ ‖r‖
2

48

)
≤ C exp

(
− ‖r‖2

4× 768π2
(ln(n0))2

)
.
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22 G. CHAGNY AND C. LACOUR

We go back to the term involving the empirical process:

P

(
sup

t∈S(m∗)
(νn(t))2 ≥ ‖r‖

2

48

)
≤

Dm∗∑
j=1

P
(
ν2
n(ϕj) ≥

‖r‖2

48Dm∗

)
.

Writing νn(ϕj) = (1/n)
∑n

i=1 Z
j
i − E[Zji ] with Z

j
i = ϕj (F0(Xi)) (see (19)) allows to apply the

Bernstein Inequality recalled in Proposition 8. We compute b =
√
Dm∗ , and v = n‖r‖∞. This

leads, for u > 0

P
(
ν2
n (ϕj) ≥

√
2‖r‖∞u+ u

1

3

√
Dm∗

)
≤ e−nu.

Choosing u = a/D4
m∗ , for a constant a and using Dm∗ ≥ ln(n0), we can obtain

√
2‖r‖∞u +

u
√
Dm∗/3 ≤ ‖r‖2/48Dm∗ , for n0 large enough, and

(30)
Dm∗∑
j=1

P
(
ν2
n (ϕj) ≥

‖r‖2

48Dm∗

)
≤ Dm∗ exp

(
−n a

D4
m∗

)
.

Putting together (27), (29), (28) and (30), we have proved

E
[
‖r̂m̃(., F̂0)− r‖21Λc

]
≤ 2

(
min(n, n0) + 2‖r‖2

){
C exp

(
−C (ln(n0))2

)
+Dm∗ exp

(
− na

D4
m∗

)}
.

Recall that Dm∗ ≤ C(n/ ln(n))1/4. The last term of this upper-bound is thus negligible compared
to 1/n (if a is large enough). The other term has the order n0 exp(−C(ln(n0))2), and are thus
smaller than C/n0. Finally,

E
[
‖r̂m̃(., F̂0)− r‖21Λc

]
≤ C

n0
+
C

n
.

2

5.5. Proof of Theorem 4. Denote by φn,n0 = (min(n, n0))−2α/(2α+1). Since there exists a
constant c′ > 0 (depending on α) such that (n−1 + n−1

0 )2α/(2α+1) ≤ c′φn,n0 , it is su�cient to
prove Inequality (10) with the lower bound φn,n0 . We separate two cases: n ≤ n0 and n > n0.
The result comes down to the proof of the two following inequalities:

inf
r̂n,n0∈En

sup
r∈Fα

E
[
‖r̂n,n0 − r‖

2
]
≥ cφn,n0 = cn−2α/(2α+1),(31)

inf
r̂n,n0∈En0

sup
r∈Fα

E
[
‖r̂n,n0 − r‖

2
]
≥ cφn,n0 = cn

−2α/(2α+1)
0 ,(32)

where En is the set of all possible estimators built with (Xi)i∈{1,...,n} and (X0,i0)i0∈{1,...,n0} when
n ≤ n0, and En0 the analogous set when n > n0.

The proof of each of the Inequalities (31) and (32) is based on the general reduction scheme
which can be found in Section 2.6 of Tsybakov (2009): the main idea is to reduce the class of
functions Fα to a �nite well-chosen subset {ra, r1, . . . , rM}, M ≥ 2 such that

(i) rl ∈ Fα, for every l ∈ {a, 1, . . . ,M}.
(ii) ‖rl − rl′‖2 ≥ 2B0φn,n0 , for every l, l

′ ∈ {a, 1, . . . ,M}, l 6= l′, for a constant B0 > 0.

(iii) For every l ∈ {1, . . . ,M}, P(n,n0)
l is absolutely continuous with respect to P(n,n0)

a and
there exists a constant κ ∈ (0; 1/8), such that

1

M

M∑
l=1

K
(
P

(n,n0)
l , P (n,n0)

a

)
≤ κ log(M),
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OPTIMAL ADAPTIVE ESTIMATION OF THE RELATIVE DENSITY 23

with K(., .) the Kullback-Leibler divergence, P(n,n0)
l (resp. P(n,n0)

a ) the probability dis-
tribution of a double sample (Xi)i∈{1,...,n} and (X0,i0)i0∈{1,...,n0} with relative density rl
(resp. ra).

If we construct a set of functions which satis�es (i), (ii), and (iii) in each of the cases n ≤ n0 and
n > n0, Inequalities (31) and (32), and thus Theorem 4, are a consequence from Theorem 2.5 of
Tsybakov (2009).

5.5.1. Construction of the subset {ra, r1, . . . , rM}. It is in the spirit of Härdle et al. (1998) (Sec-
tion 10.4, Chapter 10). First let ra = 1(0;1). Let also ψ be a regular wavelet with compact
support, and ψj,k : x 7→ 2j/2ψ(2jx − k), for (j, k) ∈ Z2. We de�ne Rj the maximal subset
of Z such that supp ψj,k ⊂ [0; 1], k ∈ Rj and that supp ψj,k ∩ supp ψj,k′ = ∅ if k 6= k′. The
cardinal of Rj is |Rj | = c2j , for j an integer and c a constant, both to be chosen below. For all
ε = (εk)k∈Rj ∈ {0; 1}|Rj |, consider

rε = ra + χε, with χε = γn,n0

∑
k∈Rj

εkψj,k,

for γn,n0 a nonnegative number (decreasing when min(n, n0) goes to ∞) de�ned below.

Now, from the Varshamov-Gilbert bound (see Lemma 2.9 of Tsybakov 2009), there exist a
�nite subset {ε(0), . . . , ε(M)} of {0; 1}|Rj |, such that ε(0) = (0, . . . , 0), and

(33) ρ(ε(l), ε(l′)) :=
∑
k∈Rj

1
ε
(l)
k 6=ε

(l′)
k

≥ |Rj |
8

=
c2j

8
, and M ≥ 2|Rj |/8 = c22j/8.

We set rl = rε(l) , l ∈ {1, . . . ,M} and remark that ra = rε(0) . In the sequel, we establish the
conditions to adjust j and γn,n0 such that (i), (ii), and (iii) are veri�ed for the set {ra, rl, l ∈
{1, 2, . . . ,M}}. The computations are mainly the same to prove Inequalities (31) and (32),
except to check (iii). Thus, we distinguish the two cases only at the end, to conclude.

5.5.2. Conditions which guarantees (i). The funtion ra is a relative density with support (0; 1)
(density supported by (0; 1)), and ‖ra‖α,2 = ‖ra‖ = 1 < L. Moreover, to have rε(x) ≥ 0 for
x ∈ (0; 1), we must suppose ‖χε‖∞ ≤ 1, that is

(34) γn,n02j/2 ≤ 1

‖ψ‖∞
.

Since
∫
R ψ(x)dx = 0, we have

∫
R χε(x)dx = 0, and thus,

∫
R rε(x)dx = 1. Therefore, if (34) holds,

rε is also a relative density, for all ε ∈ {0; 1}|Rj |. According to Hochmuth (2002) (Theorem 3.5),
‖
∑

k∈Rj εkψj,k‖α,2 ≤ 2jα‖
∑

k∈Rj εkψj,k‖, if ψ smooth enough. Since ‖
∑

k∈Rj εkψj,k‖ ≤ |Rj | =

2j , we deduce

‖rε‖α,2 ≤ ‖ra‖α,2 + ‖χε‖α,2 ≤ 1 + γn,n02jα2j/2 ≤ L,

as soon as the following condition is satis�ed:

(35) γn,n02jα2j/2 ≤ L− 1.
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24 G. CHAGNY AND C. LACOUR

5.5.3. Conditions which guarantees (ii). Let l, l′ ∈ {0, 1, . . . ,M}. We compute

‖rl − rl′‖2 = γ2
n,n0

∥∥∥∥∥∥
∑
k∈Rj

(
ε

(l)
k − ε

(l′)
k

)
ψj,k

∥∥∥∥∥∥
2

= γ2
n,n0

∑
k∈Rj

(
ε

(l)
k − ε

(l′)
k

)2
‖ψ‖2.

Thanks to (33), ‖rl − rl′‖2 = γ2
n,n0

ρ(ε(l), ε(l′))‖ψ‖2 ≥ 2jγ2
n,n0
‖ψ‖2/8. The condition (ii) is thus

ful�lled as soon as

(36) γ2
n,n0

2j ≥ 16B0

‖ψ‖2
φn,n0 .

5.5.4. Conditions which guarantees (iii) and conclusion. For l ∈ {a, 1, . . . ,M}, denote by (X l
0, X

l)
a couple of independent random variables with relative density rl, probability distribution Pl =
PXl

0
⊗PXl , marginal density f l and f l0. If l = a, remark that the de�nition of ra requires fa0 = fa.

If ((X l
0,i0

)i0=1,...,n0 , (X
l
i)i=1,...,n) is a double sample distributed as X l

0 and X
l, then its distribution

is P(n,n0)
l = P⊗n

Xl ⊗ P⊗n0

Xl
0
. Let now l ∈ {1, . . . ,M} be �xed. The following decomposition holds

K
(
P(n,n0)
l ,P(n,n0)

a

)
= nK (PXl ,PXa) + n0K

(
PXl

0
,PXa

0

)
.(37)

To satisfy (iii), we check that it is possible to obtain K(P(n,n0)
l ,P(n,n0)

a ) ≤ 2jκ log(2)/8. This is
su�cient since log(M) ≥ 2j log(2)/8 (see (33)). We have now to distinguish the two cases n ≤ n0

and n > n0 to end the proof: we choose the density functions of Xa
0 , Xa, X l

0, X
l to only keep

the term depending on n in (37) when min(n, n0) = n, and to only keep the term depending on
n0 in the other case.
End of the proof of Inequality (32). Assume n ≤ n0, such that min(n, n0) = n. We set
fa0 = fa = f l0 = 1(0;1), and f l = rl. These choices guarantee that (Xp

0 , X
p) has the relative

density rp, for p = a and p = l, and, using (37), lead to

K
(
P(n,n0)
l ,P(n,n0)

a

)
= n

∫
R

log

(
f l

fa
(x)

)
f l(x)dx = n

∫
R

log(rl(x))rl(x)dx

= n

∫
R

log (1 + χε(l)(x)) (1 + χε(l)(x)) dx.

Noting that log(1 + u) ≤ u for every u > −1, and using
∫
R χε(l)(x)dx = 0, we obtain

K
(
P(n,n0)
l ,P(n,n0)

a

)
≤ n

∫
R
χ2
ε(l)

(x)dx ≤ nγ2
n,n0
‖ψ‖22j .

Thus to ful�ll (iii) it is su�cient to have

(38) nγ2
n,n0
‖ψ‖2 ≤ κ log(2)

8
.

Now the parameters γn,n0 and 2j are choosen so that the conditions (34), (35), (36) and (38) are
satis�ed. We set, for two constants b, c0 > 0,

(39) γn,n0 =

√
b

min(n, n0)
and 2j = c0 (min(n, n0))1/(2α+1) .

With the choices b = log(2)/(128‖ψ‖2), c0 = min(((L−1)/
√
b)2/(2α+1), (‖ψ‖∞/

√
b)−2), we check

that the three conditions are veri�ed for any B0 < bc0‖ψ‖2/16, and for κ = 1/16. This concludes
the proof of Inequality (31).
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OPTIMAL ADAPTIVE ESTIMATION OF THE RELATIVE DENSITY 25

End of the proof of Inequality (31). Assume n > n0. The choice are now fa0 = fa = f l = rl,
and f l0 = 1(0;1), which also lead to the relative density rp for (Xp

0 , X
p), p = a and p = l. Here,

K
(
P(n,n0)
l ,P(n,n0)

a

)
= n0

∫
R

log

(
f l0
fa0

(x)

)
f l0(x)dx = n0

∫
R

log

(
1

rl(x)

)
dx,

We now notice that log(1 + u) ≥ u− u2/2, for u ≥ −1/2. We can assume that χε(l)(x) ≥ −1/2
(even if it means reducing the choice of the constant involved in γn,n0 , see below), and the same
computations as in the case n ≤ n0 permits to obtain

K
(
P(n,n0)
l ,P(n,n0)

a

)
≤ n0γ

2
n,n0
‖ψ‖22j ,

and the new condition

(40) n0γ
2
n,n0
‖ψ‖2 ≤ κ log(2)

8
.

The parameters (39) are still suitable to guarantee (35), (36) and (40). In this case, the constant
b need be small enough so that χε(l)(x) ≥ −1/2, which is possible. We conclude by checking the
three conditions, which leads to Inequality (32), and ends the proof of Theorem 4.
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Appendix A. Additional simulation results

This section is devoted to give additional simulation results, for examples of data which com-
plete the three models given in Section 4. First, Table 3 gives the details of the MISE which
are partly plotted in Figure 2, for samples simulated from Example (2) described in Section 4.2.
Then, we investigate other examples. The two samples (X0,i0)i0=1,...,n0 and (Xi)i=1,...,n comes
from random variables X0 and X respectively, with probability distributions described below.

(3) The variable X0 is from the Weibull distribution with parameters (2,3). We denote byW
the corresponding c.d.f.. The variable X is built such that X = W−1(S), with S chosen
from one of the three following distribution:
(a3) a beta distribution B(14, 17),
(b3) a mixture of V1 with probability 4/5 and V2 with probability 1/5, where V1 is from

B(14, 37) and V2 is from B(14, 20),
(c3) a mixture of V1 with probability 1/3 and V2 with probability 2/3, where V1 is from

B(34, 15) and V2 is from B(15, 30).
In these three cases, the relative density r to recover is the density of the variable S.
Example (b3) is the one considered to evaluate the in�uence of n and n0 in Section 4.3.

(4) The variable X0 is chosen to have a uniform distribution in the set (0; 1). The variable
X �ts one of the following models:
(a4) (1/4)(U1 + U2 + U3 + U4) where Uj , j = 1, . . . , 4 are independent and uniform on

(0; 1),
(b4) a mixture of V1 with probability 1/2 and V2 with probability 1/2, where V1 = V/2

and V2 = (V + 1)/2, and V as for model (a),
(c4) a beta distribution with parameters 4 and 5 (denoted by B(4, 5)),
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28 G. CHAGNY AND C. LACOUR

Figure 4. Plot of the di�erents investigated relative densities of Examples (3)
and (4)

(d4) a mixture of Xj , j = 1, 2, 3 with probability 1/3, where the Xj have respective
distributions B(10, 5), B(7, 7) and B(5, 10),

(e4) a mixture of X1 with probability 1/2 and X2 with probability 1/2, where X1 and
X2 have respective distributions B(15, 4) and B(5, 11).

Hence the investigated relative densities are de�ned as the densities of X, in these �ve
examples.

The third set of examples is borrowed from Molanes-López and Cao (2008a) and the fourth from
�wik and Mielniczuk (1993). The true relative densities associated to each framework of these
two sets are plotted in Figure 4: they are quite far from the uniform distribution, since the
distributions of X and X0 are not similar.

Figure 5 illustrates the stability of the method and shows beams of estimates r̂m̃: 10 estimators
built from i.i.d. samples of data are plotted together with the true functions. The MISE are
displayed in Table 4. Notice that the values we �nd are of the same order as the ones of �wik
and Mielniczuk (1993) and of Molanes-López and Cao (2008a).
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OPTIMAL ADAPTIVE ESTIMATION OF THE RELATIVE DENSITY 29

Example (a3) Example (b3)

Example (c3) Example (a4)

Example (b4) Example (c4)

Example (d4) Example (e4)

Figure 5. Beams of 10 estimators built from i.i.d. samples of size n = n0 = 500
(thin lines) versus true function (thick line) in Examples (3) and (4).
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30 G. CHAGNY AND C. LACOUR

Example (a2)

H
HHH

HHn
n0 50 100 200 400

50 0.0022 0.0021 0.0027 0.0023
100 0.0026 0.0026 0.0023 0.0016
200 0.0021 0.0024 0.0017 0.0021
400 0.0021 0.0020 0.0016 0.0004

c = 1.01

H
HHH

HHn
n0 50 100 200 400

50 0.0038 0.0040 0.0061 0.0100
100 0.0053 0.0062 0.0053 0.0036
200 0.0025 0.0054 0.0039 0.0037
400 0.0028 0.0041 0.0041 0.0036

c = 1.05

HHH
HHHn
n0 50 100 200 400

50 0.0109 0.0159 0.0166 0.0151
100 0.0121 0.0138 0.0125 0.0151
200 0.0125 0.0129 0.0130 0.0127
400 0.0121 0.0129 0.0120 0.0117

c = 1.1

HHH
HHHn
n0 50 100 200 400

50 0.2406 0.2086 0.1779 0.1491
100 0.2202 0.1573 0.1112 0.0971
200 0.2030 0.1203 0.0829 0.0712
400 0.2013 0.1090 0.0744 0.0657

c = 1.5

Example (b2)

HHH
HHHn
n0 50 100 200 400

50 0.0041 0.0080 0.0052 0.0042
100 0.0032 0.0049 0.0018 0.0015
200 0.0048 0.0036 0.0018 0.0014
400 0.0033 0.0012 0.0012 0.0014

a = 2.01

HHH
HHHn
n0 50 100 200 400

50 0.0131 0.008 0.0058 0.0092
100 0.0067 0.0093 0.0056 0.0056
200 0.0059 0.0071 0.0034 0.0041
400 0.0067 0.0042 0.0051 0.0035

a = 2.05

H
HHH

HHn
n0 50 100 200 400

50 0.0144 0.0165 0.0159 0.0134
100 0.0175 0.0154 0.0133 0.0138
200 0.0160 0.0152 0.0134 0.0128
400 0.0149 0.0135 0.0129 0.0117

a = 2.1

H
HHH

HHn
n0 50 100 200 400

50 0.3124 0.3100 0.3091 0.3110
100 0.3128 0.3104 0.3101 0.3027
200 0.3167 0.3090 0.2964 0.2933
400 0.3087 0.3078 0.3031 0.2857

a = 2.5

Table 3. Values of MISE averaged over 500 samples for the estimator r̂m̃, in Examples

(2) (a2) and (b2).
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HH
HHHHn

n0 50 100 200 400

50 0.9094 0.6008 0.3727 0.2642
100 0.8884 0.5738 0.2896 0.2108
200 0.8875 0.4877 0.2837 0.1878
400 0.9225 0.4848 0.2860 0.1817

Example (a3)

HH
HHHHn

n0 50 100 200 400

50 1.2313 0.8564 0.5358 0.4151
100 1.1737 0.7826 0.4892 0.3613
200 1.0919 0.7586 0.4379 0.2876
400 1.1359 0.7180 0.4486 0.2823

Example (b3)

H
HHH

HHn
n0 50 100 200 400

50 0.9589 0.6272 0.4593 0.3251
100 0.8717 0.5665 0.3287 0.2035
200 0.7746 0.5055 0.2848 0.1625
400 0.7908 0.4752 0.2555 0.1501

Example (c3)

H
HHH

HHn
n0 50 100 200 400

50 0.2379 0.1503 0.1094 0.0935
100 0.2303 0.1453 0.0955 0.0752
200 0.2298 0.1409 0.1032 0.0685
400 0.1903 0.1372 0.0944 0.0634

Example (a4)

H
HHH

HHn
n0 50 100 200 400

50 0.7616 0.3514 0.2053 0.1470
100 0.6133 0.2649 0.1637 0.1295
200 0.5324 0.2739 0.1539 0.1138
400 0.4977 0.2445 0.1567 0.1080

Example (b4)

H
HHH

HHn
n0 50 100 200 400

50 0.1989 0.1082 0.0661 0.0573
100 0.1684 0.0920 0.0643 0.0456
200 0.1581 0.0950 0.0572 0.0417
400 0.1541 0.0893 0.0586 0.0381

Example (c4)

HHHH
HHn
n0 50 100 200 400

50 0.2860 0.1475 0.0820 0.0625
100 0.2009 0.0901 0.0584 0.0454
200 0.1699 0.0761 0.0496 0.0358
400 0.1465 0.0759 0.0446 0.0330

Example (d4)

H
HHH

HHn
n0 50 100 200 400

50 0.4559 0.3911 0.2976 0.2287
100 0.4432 0.2884 0.1521 0.0899
200 0.4267 0.2026 0.1005 0.0751
400 0.4129 0.1731 0.0955 0.0660

Example (e4)

Table 4. Values of MISE averaged over 500 samples for the estimator r̂m̃, in Examples

(3) and (4).
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