Optimal adaptive estimation of the relative density Gaëlle Chagny, Claire Lacour

To cite this version:

Gaëlle Chagny, Claire Lacour. Optimal adaptive estimation of the relative density. 2014. hal00955161v1

HAL Id: hal-00955161
 https://hal.science/hal-00955161v1

Preprint submitted on 4 Mar 2014 (v1), last revised 14 Nov 2014 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

OPTIMAL ADAPTIVE ESTIMATION OF THE RELATIVE DENSITY

GAËLLE CHAGNY ${ }^{(A)}$ AND CLAIRE LACOUR ${ }^{(B)}$

Abstract

This paper deals with the classical statistical problem of comparing the probability distribution of two real random variables X and X_{0}, from a double independent sample. While most of the usual tools are based on the cumulative distribution function F and F_{0} of the variables, we focus on the relative density, a function recently used in two-sample problems, and defined as the density of the variable $F_{0}(X)$. We provide a nonparametric adaptive strategy to estimate the target function. An estimator is selected in a collection of projection estimate, with a criterion in the spirit of the Goldenshluger-Lepski methodology. We show the optimality of the procedure both in the oracle and the minimax sense: the convergence rate for the risk computed from an oracle inequality matches with the lower bound, that we also derived. Finally, some simulations illustrate the method.

Keywords: Adaptive estimation, model selection, relative density, two-sample problem.
AMS Subject Classification 2010: 62G05; 62G07; 62G30.

1. Introduction

1.1. Statistical model. The study of differences among groups is the main challenge of twosample problems, and statistical methods are required to do this in various fields (biology or social research for example). Nonparametric inference procedures are well-developed for comparing samples coming from two populations, modeled by two real random variables X_{0} and X. Most of the methods are based on the comparison of the cumulative distribution functions (c.d.f. in the sequel) F_{0} and F of X_{0} and X respectively. The study of the relative density r of X with respect to X_{0} is quite recent. Assume that f_{0}, the density of X_{0}, is defined on an interval A_{0} and does not vanish on it. Denote by F_{0}^{-1} the inverse of F_{0}. The relative density is defined as the density of the variable $F_{0}(X)$ and can be expressed as

$$
\begin{equation*}
r(x)=\frac{f \circ F_{0}^{-1}(x)}{f_{0} \circ F_{0}^{-1}(x)}, \quad x \in F_{0}(A), \tag{1}
\end{equation*}
$$

where \circ is the composition symbol, f is a density of X, defined on an interval $A \subset \mathbb{R}$. In the present work, we focus on the optimal adaptive estimation of this function (in the oracle and minimax senses), from two independent samples $\left(X_{i}\right)_{i \in\{1, \ldots, n\}}$ and $\left(X_{0, i_{0}}\right)_{i_{0} \in\left\{1, \ldots, n_{0}\right\}}$ of variables X and X_{0}.
1.2. Motivation. The most classical nonparametric methods to tackle the initial issue of the comparison of F and F_{0} are statistical tests such as Kolmogorov and Smirnov, Wilcoxon, or Mann and Whitney tests, which all propose to check the null hypothesis of equal c.d.f.. Probability plotting tools such as quantile-quantile plots, whose functional form is $x \mapsto F_{0}^{-1}(F(x))$, are also commonly considered. However, the representation of the quantiles of one distribution versus the quantiles of the other may be questionable. For example, Holmgren (1995) showed that it

[^0]does not enable scale-invariant comparisons of treatment effects and that it depends on outliers. Some authors have thus been interested by an alternative, the probability-probability plot, a graph of the percentiles of one distribution versus the percentiles of the other (see among all Li et al. 1996). The functional form can be written $x \mapsto F\left(F_{0}^{-1}(x)\right)$, which defines the relative c.d.f., a function closely related to the Receiver Operating Characteristic (ROC) curve: the latter is $x \mapsto 1-F\left(F_{0}^{-1}(1-x)\right)$. This curve is well-known in fields such as signal detection and diagnostic test for example. Both the relative c.d.f. and the ROC curve are based on the following transformation of the data: to compare X to X_{0}, consider $F_{0}(X)$, a variable known in the literature as the grade transformation or most commonly as the relative transformation. Its c.d.f. is the relative c.d.f. defined above. The basic idea is to look at the rank that a comparison value (that is a value of X) would have in the reference group (that is in the values of the sample of X_{0}). To recover from a double-sample the ROC curve or the relative c.d.f. in a nonparametric way, two types of strategies have mainly been studied: estimators based on the empirical c.d.f. of X and X_{0} (see Hsieh and Turnbull 1996a,b and references therein), as well as kernel smoothers (see among all Lloyd 1998; Lloyd and Yong 1999; Hall and Hyndman 2003 for the ROC curve, Gastwirth 1968; Hsieh 1995; Handcock and Morris 1999 for the relative c.d.f.). Conditional version of the previous strategies have also been studied (see the review provided by Pardo-Fernández et al. 2013). These two functions are based on the c.d.f. F and F_{0} of the two variables to compare.

Nevertheless, focusing on their densities is likely to provide more precised and visual details. That is why the present work addresses the problem of comparison through the estimation of the relative density (1), which is the derivative of the relative c.d.f., and thus a density of the variable $F_{0}(X)$. Graphically more informative than the ROC curve (see the introduction of Molanes-López and Cao 2008b), another reason for the choice of the relative density is that an estimate of this function is required to study the asymptotic variance of any ROC curve estimator, and thus to build confidence regions based on it (see the references above, and also Claeskens et al. 2003). Moreover, some summary measures for the comparison of X and X_{0} are based on the relative density r : the most classical example is the Kullback-Leibler divergence which can be recovered by the plug-in of an estimate of r (Mielniczuk, 1992; Handcock and Morris, 1999). But there exist other measures that can pertain to the relative density, such as the Gini separation measurement and some discriminant rules (Gijbels and Mielniczuk, 1995), Lorenz curves and the median polarization index (Handcock and Morris, 1999). It is also possible to build goodness-of-fit tests from the relative density, see Kim (2000).

However, not many investigations are concerned with theoretical results for the estimation of the relative density, and most of the references are sociological ones. A clear account is provided by Handcock and Janssen (2002). Early mathematical references for the relative density are Bell and Doksum (1966) and Silverman (1978), who approached the problem with the maximum likelihood point of view. A kernel estimate was first proposed by Ćwik and Mielniczuk (1993), and modified by Molanes-López and Cao (2008a) who proved asymptotic developments for the Mean Integrated Squared Error (MISE), under the assumption that r is twice continuously derivable. The problem of bandwidth selection is also addressed, but few theoretical results are proved for the estimators with the selected parameters, to the best of our knowledge. The question has also been studied in a semiparametric setting (see Cheng and Chu 2004 and references therein). If the relative density can also be brought closer to the density-ratio, for which numerous studies are available (see Sugiyama et al. 2012 for a review), some authors have noticed that the relative distribution leads to smoother and more stable results (Yamada et al., 2013). Our work is the first to study a nonparametric projection method in this setting, and provide a detailed optimal study of an adaptive estimator.
1.3. Contribution and overview. We build in this paper a new estimator of the relative density, and derive both non-asymptotic and asymptotic theoretical results. A collection of projection estimators on linear models is built in Section 2, and the quadratic risk is studied: the upper-bound is non-trivial, and requires non-straightforward splittings. We obtain a biasvariance decomposition which permits to understand what we can expect at best from adaptive estimation, which is the subject of Section 3: the model selection is automatically performed in the spirit of the Goldenshluger-Lepski method in a data-driven way (Goldenshluger and Lepski, 2011). Contrary to kernel methods, the projection method makes possible to obtain an unbiased estimate when the target function belongs to one of the approximation spaces. In the relative density estimation setting, this can occur if the two variables X and X_{0} have the same distribution, and if the constant functions are included in one of the models (which will be the case). The resulting estimator is shown to be optimal in the collection, but also, from an asymptotic point of view, among all possible estimators for a large class of regular relative density. To be more precise, an oracle-type inequality first proves that adaptation has no cost (Section 3.2): the estimator achieves the same performance as the one which would have been selected if the regularity index of the target function has been known. The choice of the quadratic risk permits to use the Hilbert structure and thus the standard model selection tools (mainly concentration inequalities) even if our selection criterion is based on the Goldenshluger-Lepski methodology. Rates of convergence are deduced, for functions r belonging to Besov balls: we obtain the nonparametric rate $\left(n^{-1}+n_{0}^{-1}\right)^{2 \alpha /(2 \alpha+1)}$, where α is the smoothness index of r. These rates are also shown to be optimal: a lower bound for the minimax risk is established (Section 3.3). Such results are new for this estimation problem. Especially, no assumption about a link between the sample sizes n and n_{0} is required, and the regularity assumptions are not restrictive. Section 4 provides a brief discussion of some practical issues via simulations. An appendix (Section A) is available with further reconstructions and risk computations. Finally, the proofs are gathered in Section 5.

2. The collection of projection estimators

For the sake of clarity, we assume that the variables X and X_{0} have the same support: $A=A_{0}$. Hence, $F_{0}(A)=(0 ; 1)$ is the estimation interval. This assumption is natural to compare the distribution of X to the one of X_{0}.
2.1. Approximation spaces. We denote by $L^{2}((0 ; 1))$, the space of square integrable functions on $(0 ; 1)$, equipped with its usual Hilbert structure: $\langle.,$.$\rangle is the scalar product, and \|$.$\| the$ associated norm. The relative density r, defined by (1) and estimated on its definition set $(0 ; 1)$ is assumed to belong to $L^{2}((0 ; 1))$. Our estimation method is based on this device: we consider a family $S_{m}, m \in \mathcal{M}$ of finite dimensional subspaces of $L^{2}((0 ; 1))$ and compute a collection of estimators $\left(\hat{r}_{m}\right)_{m \in \mathcal{M}}$, where, for all m, \hat{r}_{m} belongs to S_{m}. In a second step a data driven procedure chooses among the collection the final estimator $\hat{r}_{\hat{m}}$.

Here, simple projection trigonometric spaces are considered: the set S_{m} is linearly spanned by $\varphi_{1}, \ldots, \varphi_{2 m+1}$, with

$$
\varphi_{1}(x)=1, \varphi_{2 j}(x)=\sqrt{2} \cos (2 \pi j x), \quad \varphi_{2 j+1}(x)=\sqrt{2} \sin (2 \pi j x),, x \in(0 ; 1)
$$

We set $D_{m}=2 m+1$, the dimension of S_{m}, and $\mathcal{M}=\left\{1,2, \ldots,\left\lfloor\min \left(n, n_{0}\right) / 2\right\rfloor-1\right\}$, the collection of indices, whose cardinality depends on the two sample-sizes. The largest space in the collection has maximal dimension $D_{m_{\max }}$, which is subject to constraints appearing later. We focus on the trigonometric basis mainly for its simplicity to be handled. It is also used for a lot of other nonparametric estimation problems, by several authors (see e.g. Efromovich 1999
among all). Moreover, the presence of a constant function (namely φ_{1}) in the basis is perfectly well-adapted to the relative density estimation context, see Section 4.2 below. The method may however probably be extended to other projection spaces, thanks to different "tricks" in the computations.
2.2. Estimation on a fixed model. For each index $m \in \mathcal{M}$, we define an estimator for the orthogonal projection $r_{m}=\sum_{j=1}^{D_{m}} a_{j} \varphi_{j}$ of r onto the model S_{m}, where $a_{j}=\left\langle\varphi_{j}, r\right\rangle$. First notice that

$$
\begin{equation*}
\mathbb{E}\left[\varphi_{j}\left(F_{0}(X)\right)\right]=\int_{A} \varphi_{j} \circ F_{0}(x) f(x) d x=\int_{F_{0}(A)} \varphi_{j}(u) \frac{f \circ F_{0}^{-1}(u)}{f_{0} \circ F_{0}^{-1}(u)} d u=\left\langle\varphi_{j}, r\right\rangle=a_{j} \tag{2}
\end{equation*}
$$

with the change of variables $u=F_{0}(X)$, and keeping in mind that $F_{0}(A)=(0 ; 1)$. Thus, the following function suits well to estimate r_{m} :

$$
\begin{equation*}
\hat{r}_{m}(x)=\sum_{j=1}^{D_{m}} \hat{a}_{j} \varphi_{j}(x), \text { with } \hat{a}_{j}=\frac{1}{n} \sum_{i=1}^{n} \varphi_{j}\left(\hat{F}_{0}\left(X_{i}\right)\right) \tag{3}
\end{equation*}
$$

and where \hat{F}_{0} is the empirical c.d.f. of the sample $\left(X_{0, i_{0}}\right)_{i_{0}=1, \ldots, n_{0}}$, that is

$$
\hat{F}_{0}: x \mapsto \frac{1}{n_{0}} \sum_{i_{0}=1}^{n_{0}} \mathbf{1}_{X_{0, i_{0}} \leq x}
$$

Note that in the "toy" case of known c.d.f. F_{0}, the procedure amounts to estimate a density : \hat{r}_{m} is the classical density projection estimator (adapted to the estimation of the density of $F_{0}(X)$).
Remark 1. It is useful to point out that \hat{r}_{m} defined in (3) can also be seen as a minimum of contrast estimate: $\hat{r}_{m}=\arg \inf _{t \in S_{m}} \gamma_{n}\left(t, \hat{F}_{0}\right), \quad m \in \mathcal{M}$, with

$$
\gamma_{n}\left(t, \hat{F}_{0}\right)=\|t\|^{2}-\frac{2}{n} \sum_{i=1}^{n} t \circ \hat{F}_{0}\left(X_{i}\right)
$$

2.3. Risk of a projection estimator. The global squared error is the natural criterion associated to the projection estimation procedure. First consider the toy case of known c.d.f. F_{0}. The Pythagoras theorem simply leads to the classical bias-variance decomposition:

$$
\begin{equation*}
\left\|r-\hat{r}_{m}\right\|^{2}=\left\|r-r_{m}\right\|^{2}+\left\|\hat{r}_{m}-r_{m}\right\|^{2} . \tag{4}
\end{equation*}
$$

Moreover, the variance term can be easily bounded, still with known F_{0}, and using the property of the trigonometric basis:

$$
\begin{equation*}
\mathbb{E}\left[\left\|\hat{r}_{m}-r_{m}\right\|^{2}\right]=\sum_{j=1}^{D_{m}} \operatorname{Var}\left(\hat{a}_{j}\right) \leq \frac{1}{n} \sum_{j=1}^{D_{m}} \mathbb{E}\left[\varphi_{j}^{2}\left(F_{0}\left(X_{1}\right)\right)\right]=\frac{D_{m}}{n} \tag{5}
\end{equation*}
$$

The challenge in the general case comes from the plug-in of the empirical \hat{F}_{0}. It seems natural but involves non straightforward computations. This is why the proof of the following upper-bound for the risk is postponed to Section 5.

Proposition 1. Assume that the relative density r is continuously differentiable on $(0 ; 1)$. Assume also that $D_{m} \leq \kappa n_{0}^{1 / 3}$, for a constant $\kappa>0$. Then, there exist two constants c_{1} and c_{2} such that,

$$
\begin{equation*}
\mathbb{E}\left[\left\|\hat{r}_{m}-r\right\|^{2}\right] \leq 3\left\|r-r_{m}\right\|^{2}+\left(3 \frac{D_{m}}{n}+c_{1}\|r\|^{2} \frac{D_{m}}{n_{0}}\right)+c_{2}\left(\frac{1}{n}+\frac{1}{n_{0}}\right) \tag{6}
\end{equation*}
$$

The constants c_{1} and c_{2} do not depend on n, n_{0} and m. Moreover, c_{1} also does not depend on r.

The assumption on the model dimension D_{m} comes from the control of the deviations between \hat{F}_{0} and F_{0}. Proposition 1 shows that the risk is divided into three terms: a squared-bias term, a variance term (proportional to $D_{m}\left(n^{-1}+n_{0}^{-1}\right)$) and a remainder (proportional to $\left(n^{-1}+n_{0}^{-1}\right)$). The upper bound of (1) is non trivial, and the proof requires tricky approximations (see Section 5.2 e.g.).
2.4. Rates of convergence on Besov balls. The result (6) also gives the asymptotic rate for an estimator if we consider that r belongs to a Besov ball $B_{p, \infty}^{\alpha}((0 ; 1), L)$ of radius L (p a nonnegative integer, $L>0, \alpha>0$), for the Besov norm $\|\cdot\|_{\alpha, p}$ on the Besov space $\mathcal{B}_{p, \infty}^{\alpha}((0 ; 1))$. For a precise definition of those notions, we refer to DeVore and Lorentz (1993), Chapter 2, Section 7, where it is also proved that $\mathcal{B}_{p, \infty}^{\alpha}((0 ; 1)) \subset \mathcal{B}_{2, \infty}^{\alpha}((0 ; 1))$ for $p \geq 2$. This justifies that we now restrict to $\mathcal{B}_{2, \infty}^{\alpha}((0 ; 1))$. The following rate is obtained.

Corollary 1. Assume that the relative density r belongs to the Besov ball $B_{2, \infty}^{\alpha}((0 ; 1), L)$, for $L>0$, and $\alpha \geq 1$. Choose a model $m_{n, n_{0}}$ such that $D_{m_{n, n_{0}}}=C\left(n^{-1}+n_{0}^{-1}\right)^{-1 /(2 \alpha+1)}$, for $C>0$. Then, under the assumptions of Proposition 1, there exists a numerical constant C^{\prime} such that

$$
\mathbb{E}\left[\left\|\hat{r}_{m_{n, n_{0}}}-r\right\|^{2}\right] \leq C^{\prime}\left(\frac{1}{n}+\frac{1}{n_{0}}\right)^{\frac{2 \alpha}{2 \alpha+1}}
$$

This inequality is a straightforward consequence of the result of DeVore and Lorentz (1993) and of Lemma 12 of Barron et al. (1999), which imply that the bias term $\left\|r-r_{m}\right\|^{2}$ is of order $D_{m}^{-2 \alpha}$. The minimum of the right-hand side term of (6) can thus be computed, leading to Corollary 1. Nevertheless, it is worth noticing that the rate depends on the two sample sizes n and n_{0}. Heuristically, it is $\left(\min \left(n, n_{0}\right)\right)^{-2 \alpha /(2 \alpha+1)}$. The rate we obtain is new in nonparametric estimation, but it is not surprising. Actually, it looks like the Kolmogorov-Smirnov two-sample test convergence result: it is well-known that the test statistic rate is $\sqrt{n n_{0} /\left(n+n_{0}\right)}$ (see for example Doob 1949). More recently, similar rates have been obtained in adaptive minimax testing (see e.g. Butucea and Tribouley (2006)).

Remark 2. The regularity condition $\alpha \geq 1$ ensures that there exists a dimension $D_{m_{n, n_{0}}}$ which satisfies $D_{m} \leq C n_{0}^{1 / 3}$ while being of order $\left(n^{-1}+n_{0}^{-1}\right)^{-1 /(2 \alpha+1)}$. When $\alpha<1$, this choice remains possible and the convergence rate is preserved under the additional assumption $n \leq$ $n_{0} /\left(n_{0}^{(2-2 \alpha) / 3}-1\right)$. Roughly, this condition means that $n \leq n_{0}^{(2 \alpha+1) / 3}<n_{0}$, and thus n and n_{0} must be put in order to handle this case.

It follows from Corollary 1 that the optimal dimension depends on the unknown regularity α of the function to be estimated. The aim is to perform an adaptive selection only based on the data.

3. Adaptive optimal estimation

3.1. Model selection. Consider the collection $\left(S_{m}\right)_{m \in \mathcal{M}}$ of models defined in Section 2.1 and the collection $\left(\hat{r}_{m}\right)_{m \in \mathcal{M}}$ of estimators defined by (3). The aim is to propose a data driven choice of m leading to an estimator with risk near of the squared-bias/variance compromize (see (6)). The selection combines two strategies: the model selection device performed with a penalization of the contrast (see e.g. Barron et al. 1999), and the recent Goldenshluger-Lepski method (Goldenshluger and Lepski, 2011). A similar device has already been used in Comte and

Johannes (2012), Bertin et al. (2013) and Chagny (2013). We set, for every index m,

$$
\begin{align*}
& V(m)=c_{0}\left(\frac{D_{m}}{n}+\|r\|^{2} \frac{D_{m}}{n_{0}}\right) \tag{7}\\
& A(m)=\max _{m^{\prime} \in \mathcal{M}}\left(\left\|\hat{r}_{m^{\prime}}-\hat{r}_{m \wedge m^{\prime}}\right\|^{2}-V\left(m^{\prime}\right)\right)_{+}
\end{align*}
$$

where $m \wedge m^{\prime}$ is the minimum between m and $m^{\prime},(x)_{+}$the maximum between x and 0 (for a real number x), and c_{0} a tuning parameter. The quantity V must be understood as a penalty term, and A is an approximation of the squared-bias term (see Lemma 11). The estimator of r is now given by $\hat{r}_{\hat{m}}$, with

$$
\hat{m}=\operatorname{argmin}_{m \in \mathcal{M}}\{A(m)+V(m)\} .
$$

By construction, the choice of the index m, and hence the estimator $\hat{r}_{\hat{m}}$ does not depend on the regularity assumption on the relative density r.
3.2. Optimality in the oracle sense. A non-asymptotic upper-bound is derived for the risk of the estimator $\hat{r}_{\hat{m}}$.

Theorem 2. Assume that the relative density r is continuously differentiable on $(0 ; 1)$. Assume also that $D_{m} \leq \kappa n_{0}^{1 / 3} / \ln ^{2 / 3}\left(n_{0}\right)$, for a constant $\kappa>0$. Then, there exist two constants c and C such that

$$
\begin{equation*}
\mathbb{E}\left[\left\|\hat{r}_{\hat{m}}-r\right\|^{2}\right] \leq c \min _{m \in \mathcal{M}}\left\{\left(\frac{D_{m}}{n}+\|r\|^{2} \frac{D_{m}}{n_{0}}\right)+\left\|r_{m}-r\right\|^{2}\right\}+C\left(\frac{1}{n}+\frac{1}{n_{0}}\right) . \tag{8}
\end{equation*}
$$

The constant c is purely numerical, while C depends on r, but neither on n nor n_{0}.
Theorem 2 establishes the optimality of the selection rule in the oracle sense. For every index $m \in \mathcal{M},\left\{\left(D_{m} / n+\|r\|^{2} D_{m} / n_{0}\right)+\left\|r_{m}-r\right\|^{2}\right\}$ has the same order as $\mathbb{E}\left[\left\|\hat{r}_{m}-r\right\|^{2}\right]$ (see Proposition 1). Thus, Inequality (8) indicates that up to a multiplicative constant, the estimator $\hat{r}_{\hat{m}}$ converges as fast as the best estimator in the collection. The proof of such result is based on the following scheme: we first come down to the case of a known c.d.f. F_{0}, by using deviation results for the empirical c.d.f. Then, we use concentration results for empirical processes to prove that $A(m)$ defined in (7) is a good estimate of the bias term.

The following corollary states the convergence rate of the risk over Besov balls. Since the regularity parameter defining the functional class is not supposed to be known to select the estimator $\hat{r}_{\hat{m}}$, it is an adaptation result: the estimator adapts to the unknown regularity α of the function r.

Corollary 2. Assume that the relative density r belongs to $B_{2, \infty}^{\alpha}((0 ; 1), L)$, for $L>0$, and $\alpha \geq 1$. Under the assumptions of Theorem 2,

$$
\mathbb{E}\left[\left\|\hat{r}_{\hat{m}}-r\right\|^{2}\right] \leq C\left(\frac{1}{n}+\frac{1}{n_{0}}\right)^{\frac{2 \alpha}{2 \alpha+1}} .
$$

It is worth noticing that the rate of convergence computed above (that is the one of the best estimator among the collection, see Corollary 1), is automatically achieved by the estimator $\hat{r}_{\hat{m}}$. Corollary 2 is established with regularity assumptions stated on the target function r only. To the best of our knowledge, in the previous works, convergence results for selected relative density estimators (among a family of kernel ones) depended on strong assumptions on $r\left(r \in \mathcal{C}^{6}((0 ; 1))\right.$ e.g.) but also on the regularity of f_{0}.

The penalty term V given in (7) cannot be used in practice, since it depends on the unknown quantity $\|r\|^{2}$. A solution is to replace it by an estimator, and to prove that the estimator of r built with this random penalty keeps the adaptation property. To that aim, set, for an index $m^{*} \in \mathcal{M}$,

$$
\begin{align*}
& \widetilde{V}(m)=c_{0}\left(\frac{D_{m}}{n}+4\left\|\hat{r}_{m^{*}}\right\|^{2} \frac{D_{m}}{n_{0}}\right) \tag{9}\\
& \widetilde{A}(m)=\max _{m^{\prime} \in \mathcal{M}}\left(\left\|\hat{r}_{m^{\prime}}-\hat{r}_{m \wedge m^{\prime}}\right\|^{2}-\widetilde{V}\left(m^{\prime}\right)\right)_{+}
\end{align*}
$$

and $\tilde{m}=\operatorname{argmin}_{m \in \mathcal{M}}\{\widetilde{A}(m)+\widetilde{V}(m)\}$. The result for $\hat{r}_{\tilde{m}}$ is described in the following theorem.
Theorem 3. Assume that the assumptions of Theorem 2 are satisfied, and that r belongs to $B_{2, \infty}^{\alpha}((0 ; 1), L)$, for $L>0$, and $\alpha \geq 1$. Choose m^{*} in the definition of \widetilde{V} such that $D_{m^{*}} \geq \ln \left(n_{0}\right)$ and $D_{m^{*}}=O\left(n^{1 / 4} / \ln ^{1 / 4}(n)\right)$. Then, for n_{0} large enough, there exist two constants c and C such that,

$$
\mathbb{E}\left[\left\|\hat{r}_{\tilde{m}}-r\right\|^{2}\right] \leq c \min _{m \in \mathcal{M}}\left\{\left(\frac{D_{m}}{n}+\|r\|^{2} \frac{D_{m}}{n_{0}}\right)+\left\|r_{m}-r\right\|^{2}\right\}+C\left(\frac{1}{n}+\frac{1}{n_{0}}\right)
$$

As for Theorem 2, the result proves that the selection rule leads to the best trade-off between a bias and a variance term. Our estimation procedure is thus optimal in the oracle sense. The convergence rates derived in Corollary 2 remains valid for $\hat{r}_{\tilde{m}}$. Now, the only remainding parameter to tune is the constant c_{0} involved in the definition of \widetilde{V}. A value is obtained in the proof, but it is quite rough and useless in practice. A sharp bound seems difficult to obtain from a theoretical point of view: obtaining minimal penalties is still a difficult problem (see e.g. Birgé and Massart 2007), and this question could be the subject of a full paper. Therefore, we experiment the tuning by a simulation study over various models.
3.3. Optimality in the minimax sense. Until now, we have drawn conclusions about the performance of the selected estimators $\hat{r}_{\hat{m}}$ or $\hat{r}_{\tilde{m}}$ within the collection $\left(\hat{r}_{m}\right)_{m \in \mathcal{M}}$ of projection estimators. A natural question follows: is the convergence rate obtained in Corollary 2 optimal among all the possible estimation strategies? We prove that the answer is yes by establishing the following lower bound for the minimax risk of the relative density estimation problem, without making any assumption.

Theorem 4. Let \mathcal{F}_{α} be the set of relative density functions on $(0 ; 1)$ which belong to the Besov ball $B_{2, \infty}^{\alpha}((0 ; 1), L)$, for a fixed radius $L>1$, and for $\alpha \geq 1$. Then there exists a constant $c>0$ which depends on (α, L) such that

$$
\begin{equation*}
\inf _{\hat{r}_{n, n_{0}}} \sup _{r \in \mathcal{F}_{\alpha}} \mathbb{E}\left[\left\|\hat{r}_{n, n_{0}}-r\right\|^{2}\right] \geq c\left(\frac{1}{n}+\frac{1}{n_{0}}\right)^{2 \alpha /(2 \alpha+1)} \tag{10}
\end{equation*}
$$

where the infimum is taken over all possible estimators $\hat{r}_{n, n_{0}}$ obtained with the two data samples $\left(X_{i}\right)_{i \in\{1, \ldots, n\}}$ and $\left(X_{0, i_{0}}\right)_{i_{0} \in\left\{1, \ldots, n_{0}\right\}}$.

The optimal convergence rate is thus $\left(n^{-1}+n_{0}^{-1}\right)^{2 \alpha /(2 \alpha+1)}$. The upper-bound of Corollary 2 and the lower bound (10) match, up to constants. This proves that our estimation procedure achieves the minimax rate and is thus also optimal in the minimax sense. The result is not straightforward: the proof requires specific constructions, since it captures the influence of both sample sizes, n and n_{0}. Although it is a lower bound for a kind of density function, we think it can not be easily deduced from the minimax rate of density estimation over Besov ball (see for example Kerkyacharian and Picard 1992), since the two samples do not have symmetric roles.

4. Simulation

In this section, we present the performance of the estimator $\hat{r}_{\tilde{m}}$ on simulated data. We have carried out an intensive simulation study. After describing the way we compute the estimator, two types of questions are discussed, to evaluate the robustness of our method. First, we focus on the quality of estimation when the variable X is close (in distribution) to X_{0}. Second, we investigate the role of the two sample sizes, n and n_{0}. For additional reconstruction and risk computations, the reader may refer to the appendix (Section A).
4.1. Implementation. The implementation of the estimator is very simple, and follows the steps below.

- For each $m \in \mathcal{M}$, compute $\left(\hat{r}_{m}\left(x_{k}\right)\right)_{k=1, \ldots, K}$ defined by (3) for grid points $\left(x_{k}\right)_{k=1, \ldots, K}$ evenly distributed across $(0 ; 1)$, with $K=50$.
- For each $m \in \mathcal{M}$, compute $\widetilde{V}(m)$ and $\widetilde{A}(m)$, defined by (9).
- For $\tilde{V}(h)$. We choose $c_{0}=1.5$, but the estimation results seem quite robust to slight changes. The index m^{*} of the estimator $\hat{r}_{m^{*}}$ used in \widetilde{V} is the smallest integer greater than $\ln \left(n_{0}\right)-1$.
- For $\widetilde{A}(h)$. We approximate the L^{2} norms by the corresponding Riemann sums computed over the grid points $\left(x_{k}\right)_{k}$:

$$
\left\|\hat{r}_{m^{\prime}}-\hat{r}_{m \wedge m^{\prime}}\right\|^{2} \approx \frac{1}{K} \sum_{k=1}^{K}\left(\hat{r}_{m^{\prime}}\left(x_{k}\right)-\hat{r}_{m \wedge m^{\prime}}\left(x_{k}\right)\right)^{2}
$$

- Select the $\operatorname{argmin} \tilde{m}$ of $\widetilde{A}(m)+\widetilde{V}(m)$, and choose $\hat{r}_{\tilde{m}}$.

The risks $\mathbb{E}\left[\left\|\left(\hat{r}_{\tilde{m}}\right)_{+}-r\right\|^{2}\right]$ are also computed: it is not difficult to see that the choice of the positive part of the estimator can only make its risk decreases. To compute the expectation, we average the integrated squared error (ISE) computed with $N=500$ replications of the samples $\left(X_{0, i_{0}}\right)_{i_{0}}$ and $\left(X_{i}\right)_{i}$. Notice that the grid size $(K=50)$, and the number of replications $(N=500)$ are the same as Ćwik and Mielniczuk (1993).
4.2. Experiment 1 - Two samples with close distributions. The trigonometric basis suits well to recover relative densities. Indeed, the first function of the basis is $\varphi_{1}: x \in(0 ; 1) \mapsto 1$, and thus the first estimated coefficient \hat{a}_{1} in (3) also equals 1 . But we know that the relative density is constant equal to 1 over $(0 ; 1)$ when X and X_{0} have the same distribution. Consequently, our procedure permits to obtain an exact estimation in this case, provided that the data driven criterion leads to the choice of the first model in the collection. We hope to select $D_{\hat{m}}=1$, that is $\hat{m}=0$. In this section, we check that the estimation procedure actually easily handle this case.

First, we generate two samples $\left(X_{0, i_{0}}\right)_{i_{0}=1, \ldots, n_{0}}$ and $\left(X_{i}\right)_{i=1, \ldots, n}$ coming from random variables X_{0} and X respectively, with one of the following common probability distributions (Example (1) in the sequel): (a1) a uniform distribution in the set $(0 ; 1)$, (b1) a beta distribution $\mathcal{B}(2,5)$, (c1) a Gaussian distribution with mean 0 and variance 1 , (d1) an exponential distribution with mean $1 / 5$. As explained, the estimator is expected to be constant equal to 1 : the selected index m must thus be 0 . This is the case for most of the samples we simulate: for example, only 1% of the 500 estimators computed with 50 i.i.d. Gaussian pairs $\left(X, X_{0}\right)$ are not identically equal to 1 . The medians of the ISE over 500 replicated samples are always equal to 0 , whatever the distribution of X and X_{0}, chosen among the examples (uniform, beta, Gaussian, or exponential). The MISE are dispayed in Table 1, for different possible sample sizes. We can also check that

	n_{0}	50	100	200
400				
50	0.0018	0.0056	0.0073	0.0046
100	0.0011	0.0032	0.0025	0.0017
200	0.0011	0.0011	0.0014	0.0006
400	0	0.0010	0.0007	0.0004

	n_{0}	50	100	200
400				
50	0.0034	0.0042	0.0018	0.0035
100	0.0005	0.0020	0.0011	0.0015
200	0.0009	0.0008	0.0011	0.0022
400	0.0005	0.0009	0.0013	0.0009
Example (b1)				

	n_{0}	50	100	200
400				
50	0.0021	0.0018	0.0035	0.0047
100	0.0015	0.0014	0.0016	0.0010
200	0.0004	0.0018	0.0016	0.0019
400	0.0023	0.0023	0.0005	0.0013

n	50	100	200	400
50	0.0038	0.0015	0.0041	0
100	0.0008	0.0028	0.0023	0.0016
200	0.0017	0.0012	0.0009	0.0012
400	0.0012	0.0011	0.0009	0.0008
Example (d1)				

TABLE 1. Values of MISE averaged over 500 samples for the estimator $\hat{r}_{\tilde{m}}$, in Example (1) ((a1) to (d1)).
they are much more smaller than the MISE obtained with two different distributions for X and X_{0} (see Table 4 in Appendix, Section A).

Then, we investigate what happens when X is close to X_{0} but slightly different, with samples simulated from the set of Example (2).
(a2) The variable X_{0} is from the uniform distribution on $(0 ; 1)$, and the variable X has the density $f(x)=c \mathbf{1}_{(0 ; 0.5)}(x)+(2-c) \mathbf{1}_{(0.5 ; 1)}(x)$, with $c \in\{1.01,1.05,1.1,1.3,1.5\}$ (the case $c_{1}=1$ is the case of the uniform distribution on $\left.(0 ; 1)\right)$.
(b2) The variable X_{0} is from the beta distribution $\mathcal{B}(2,5)$, and the variable X from a beta distribution $\mathcal{B}(a, 5)$ with $a \in\{2.01,2.05,2.1,2.3,2.5\}$. For this example, the risks are computed over a regular grid of the interval $\left[F_{0}(0.01) ; F_{0}(0.99)\right]$.
Figure 1 shows the true relative densities for these two examples.
The MISEs in Examples (2) (a2) and (b2) are plotted in Figure 2 with respect to the sample sizes $n=n_{0}$. Details are also given in Table 3 (Appendix, Section A). The larger c (resp. a), the further X from X_{0} the larger the MISE. The results are thus better especially when the two variable distributions are close.
4.3. Experiment 2 - Influence of the two sample sizes. We now study the influence of the two sample sizes. Recall that the theoretical results we obtain do not require any link between n and n_{0}. On the contrary, they are often supposed to be proportional in the literature. But we obtain a convergence rate in which n and n_{0} play symmetric roles (see Corollary 2). What happens in practice? To briefly discuss this question, let us consider the observations of $\left(X_{i}\right)_{i \in\{1, \ldots, n\}}$ and $\left(X_{0, i_{0}}\right)_{i_{0} \in\left\{1, \ldots, n_{0}\right\}}$ fitting the following model (Example 3). The variable X_{0} is from the Weibull distribution with parameters (2,3) (we denote by W the corresponding c.d.f.) and X is built such that $X=W^{-1}(S)$, with S a mixture of two beta distributions: $\mathcal{B}(14,37)$

Example (a2)

Example (b2)

Figure 1. Plot of the differents investigated relative densities of Examples (2), (a2) and (b2).

Figure 2. MISE with respect to the sample sizes $n=n_{0}$ in Examples (2) (a2) and (b2).
with probability $4 / 5$ and $\mathcal{B}(14,20)$ with probability $1 / 5$. The example is borrowed from MolanesLópez and Cao (2008a). Let us look at the beams of estimates $\hat{r}_{\tilde{m}}$: in Figure 3, 10 estimators built from i.i.d. samples of data are plotted together with the true functions. This illustrates that increasing n_{0} for fixed n seems to improve more substantially the risk than the other way round (the improvement when n_{0} increases appears horizontally in Figure 3). Such a phenomenon also appears when a more quantitative criterion is considered: the MISE in Table 2 are not symmetric with respect to n and n_{0}, even if, as expected, they all get smaller when the sample sizes n and n_{0} increase. Even if this can be suprising when comparing with the theory, recall that the relative density of X with respect to X_{0} is not the same than the relative density of X_{0} with respect to X. The role of the reference variable is coherently more important, even if it is not clear in the convergence rate of Corollary 2. The details of the computation in the proofs also show that n and n_{0} do not play similar roles (see e.g. Lemma 10). An explanation may be the following: in the method, the sample $\left(X_{i}\right)_{i \in\{1, \ldots, n\}}$ is used in a nonparametric way, like in classical density estimation, while the other, that is $\left(X_{0, i_{0}}\right)_{i_{0} \in\left\{1, \ldots, n_{0}\right\}}$ is usefull through the empirical c.d.f. which

Figure 3. Beams of 10 estimators built from i.i.d. samples of various sizes $\left(n ; n_{0}\right)$ (thin lines) versus true function (thick line) in Example (3)(a3) .

n	50	100	200	400
50	1.2313	0.8564	0.5358	0.4151
100	1.1737	0.7826	0.4892	0.3613
200	1.0919	0.7586	0.4379	0.2876
400	1.1359	0.7180	0.4486	0.2823

Table 2. Values of MISE averaged over 500 samples for the estimator $\hat{r}_{\tilde{m}}$, in Example (3).
is known to be convergent at a parametric rate, faster than the previous one. Notice finally that the same results are obtained for estimators computed from the sets of observations described in the Appendix (see Table 4). In any case, such results might be used by a practitioner, when the choice of the reference sample is not natural: a judicious way to decide which of the sample which play the role of $\left(X_{0, i_{0}}\right)$ is to choose the larger one.

5. Proofs

5.1. Preliminary notations and results.

5.1.1. Notations. We need additional notations in this section. First, we specify the definition of the procedure. The estimators $\hat{r}_{m}, m \in \mathcal{M}$ defined by (3) are now denoted by $\hat{r}_{m}\left(., \hat{F}_{0}\right)$. Its coefficients in the Fourier basis are $\hat{a}_{j}^{\hat{F}_{0}}$. When we plug F_{0} in (3), we denote it by $\hat{r}_{m}\left(., F_{0}\right)$, and the coefficients by $\hat{a}_{j}^{F_{0}}$. Then, we set $U_{0, i_{0}}=F_{0}\left(X_{0, i_{0}}\right)\left(i_{0}=1, \ldots, n_{0}\right)$, and let \widehat{U}_{0} be the empirical c.d.f. associated to the sample $\left(U_{0, i_{0}}\right)_{i_{0}=1, \ldots, n_{0}}$. We also denote by $\mathbb{E}\left[. \mid\left(X_{0}\right)\right]$ the conditional expectation given the sample $\left(X_{0, i_{0}}\right)_{i_{0}=1, \ldots, n_{0}}$ (the conditional variance will be coherently denoted by $\left.\operatorname{Var}\left(. \mid\left(X_{0}\right)\right)\right)$.

Finally, for any measurable function t defined on $(0 ; 1)$, we denote by $\|t\|_{\infty}$ the quantity $\sup _{x \in(0 ; 1)}|t(x)|$, and $i d$ is the function such that $u \mapsto u$, on the interval $(0 ; 1)$.
5.1.2. Useful tools. Key arguments for the proofs are the deviations properties of the empirical c.d.f. \hat{F}_{0} of the sample $\left(X_{0, i_{0}}\right)_{i_{0}}$.

First, recall that $U_{0, i_{0}}$ is a uniform variable on $(0 ; 1)$ and that $\hat{F}_{0}\left(F_{0}^{-1}(u)\right)=\widehat{U}_{0}(u)$, for all $u \in(0 ; 1)$. Keep in mind that the random variable $\sup _{x \in A_{0}}\left|\hat{F}_{0}(x)-F_{0}(x)\right|$ has the same distribution as $\left\|\widehat{U}_{0}-i d\right\|_{\infty}$. The following inequalities are used several times to control the deviations of the empirical c.d.f \hat{U}_{n}. Dvoretzky et al. (1956) established the first one.
Proposition 5. (Dvoretzky-Kiefer-Wolfowitz's Inequality) There exist a constant $C>0$, such that, for any integer $n_{0} \geq 1$ and any $\lambda>0$,

$$
\mathbb{P}\left(\left\|\widehat{U}_{0}-i d\right\|_{\infty} \geq \lambda\right) \leq C \exp \left(-2 n_{0} \lambda^{2}\right)
$$

By integration, we then deduce a first other bound:
Proposition 6. For any integer $p>0$, there exists a constant $C_{p}>0$ such that

$$
\mathbb{E}\left[\left\|\widehat{U}_{0}-i d\right\|_{\infty}^{p}\right] \leq \frac{C_{p}}{n_{0}^{p / 2}}
$$

More precise bounds are also required:
Corollary 3. For any $\kappa>0$, for any integer $p \geq 2$, there exists also a constant C such that

$$
\begin{equation*}
\mathbb{E}\left[\left(\left\|\widehat{U}_{0}-i d\right\|_{\infty}^{p}-\kappa \frac{\ln ^{p / 2}\left(n_{0}\right)}{n_{0}^{p / 2}}\right)_{+}\right] \leq C n_{0}^{-2^{\frac{2-p}{p}} \kappa^{2 / p}} \tag{11}
\end{equation*}
$$

5.1.3. The Talagrand Inequality. The proofs of the main results (Theorems 2 and 3) are based on the use of concentration inequalities. The first one is the following version of the Talagrand Inequality.

Proposition 7. Let ξ_{1}, \ldots, ξ_{n} be i.i.d. random variables, and define $\nu_{n}(s)=\frac{1}{n} \sum_{i=1}^{n} s\left(\xi_{i}\right)-$ $\mathbb{E}\left[s\left(\xi_{i}\right)\right]$, for s belonging to a countable class \mathcal{S} of real-valued measurable functions. Then, for $\delta>0$, there exist three constants $c_{l}, l=1,2,3$, such that

$$
\begin{align*}
\mathbb{E}\left[\left(\sup _{s \in \mathcal{S}}\left(\nu_{n}(s)\right)^{2}-c(\delta) H^{2}\right)_{+}\right] \leq & c_{1}\left\{\frac{v}{n} \exp \left(-c_{2} \delta \frac{n H^{2}}{v}\right)\right. \tag{12}\\
& \left.+\frac{M_{1}^{2}}{C^{2}(\delta) n^{2}} \exp \left(-c_{3} C(\delta) \sqrt{\delta} \frac{n H}{M_{1}}\right)\right\}
\end{align*}
$$

with $C(\delta)=(\sqrt{1+\delta}-1) \wedge 1, c(\delta)=2(1+2 \delta)$ and

$$
\sup _{s \in \mathcal{S}}\|s\|_{\infty} \leq M_{1}, \mathbb{E}\left[\sup _{s \in \mathcal{S}}\left|\nu_{n}(s)\right|\right] \leq H, \text { and } \sup _{s \in \mathcal{S}} \operatorname{Var}\left(s\left(\xi_{1}\right)\right) \leq v
$$

Inequality (12) is a classical consequence of Talagrand's Inequality given in Klein and Rio (2005): see for example Lemma 5 (page 812) in Lacour (2008). Using density arguments, we can apply it to the unit sphere of a finite dimensional linear space.

The second one is the classical Bernstein Inequality, see for instance Proposition 2.9 and its comments in Massart (2007):

Proposition 8. Let $\left(Z_{i}\right)_{i=1, \ldots, n}$ be independent real-valued random variables. Assume that their exist some positive number v and b such that

$$
\sum_{i=1}^{n} \mathbb{E}\left[\left(Z_{i}\right)^{2}\right] \leq v \text { and }, \forall i \in\{1, \ldots, n\}, Z_{i} \leq b
$$

Then, for every positive u,

$$
\mathbb{P}\left(\frac{1}{n} \sum_{i=1}^{n}\left(Z_{i}-\mathbb{E}\left[Z_{i}\right]\right) \geq \sqrt{2 \frac{v}{n} u}+\frac{b}{3} u\right) \leq \exp (-n u) .
$$

5.2. Proof of Proposition 1. A key point is the following decomposition which holds for any index m

$$
\left\|\hat{r}_{m}\left(., \hat{F}_{0}\right)-r\right\|^{2} \leq 3 T_{1}^{m}+3 T_{2}^{m}+3\left\|\hat{r}_{m}\left(., F_{0}\right)-r\right\|^{2},
$$

with

$$
\begin{align*}
T_{1}^{m} & =\left\|\hat{r}_{m}\left(., \hat{F}_{0}\right)-\hat{r}_{m}\left(., F_{0}\right)-\mathbb{E}\left[\hat{r}_{m}\left(., \hat{F}_{0}\right)-\hat{r}_{m}\left(., F_{0}\right) \mid\left(X_{0}\right)\right]\right\|^{2} \\
T_{2}^{m} & =\left\|\mathbb{E}\left[\hat{r}_{m}\left(., \hat{F}_{0}\right)-\hat{r}_{m}\left(., F_{0}\right) \mid\left(X_{0}\right)\right]\right\|^{2} \tag{13}
\end{align*}
$$

We have already proved (see (4) and (5)) that $\left\|\hat{r}_{m}\left(., F_{0}\right)-r\right\|^{2} \leq D_{m} / n+\left\|r_{m}-r\right\|^{2}$. Therefore, it remains to apply the two following lemmas, proved in the two following sections.

Lemma 9. Under the assumptions of Proposition 1,

$$
\mathbb{E}\left[T_{1}^{m}\right] \leq 2 \pi^{2} \frac{D_{m}^{3}}{n n_{0}}
$$

Lemma 10. Under the assumptions of Proposition 1, ,

$$
\mathbb{E}\left[T_{2}^{m}\right] \leq 3\|r\|^{2} \frac{D_{m}}{n_{0}}+3 \frac{\pi^{4}}{4} C_{4}\|r\|^{2} \frac{D_{m}^{4}}{n_{0}^{2}}+\frac{32 \pi^{6} C_{6}}{3}\|r\|^{2} \frac{D_{m}^{7}}{n_{0}^{3}}+3 \frac{\left\|r^{\prime}\right\|^{2}}{n_{0}}
$$

The result follows if $D_{m} \leq \kappa n_{0}^{1 / 3}$.
5.2.1. Proof of Lemma 9. The decompositions of the estimator in the orthogonal basis $\left(\varphi_{j}\right)_{j}$ yields

$$
T_{1}^{m}=\sum_{j=1}^{D_{m}}\left(\hat{a}_{j}^{\hat{F}_{0}}-\hat{a}_{j}^{F_{0}}-\mathbb{E}\left[\hat{a}_{j}^{\hat{F}_{0}}-\hat{a}_{j}^{F_{0}} \mid\left(X_{0}\right)\right]\right)^{2}
$$

and therefore, $\mathbb{E}\left[T_{1}^{m} \mid\left(X_{0}\right)\right]=\sum_{j=1}^{D_{m}} \operatorname{Var}\left(\hat{a}_{j}^{\hat{F}_{0}}-\hat{a}_{j}^{F_{0}} \mid\left(X_{0}\right)\right)$. Moreover, for any index j,

$$
\begin{aligned}
\operatorname{Var}\left(\hat{a}_{j}^{\hat{F}_{0}}-\hat{a}_{j}^{F_{0}} \mid\left(X_{0}\right)\right) & \leq \frac{1}{n} \mathbb{E}\left[\left(\varphi_{j} \circ \hat{F}_{0}\left(X_{1}\right)-\varphi_{j} \circ F_{0}\left(X_{1}\right)\right)^{2} \mid\left(X_{0}\right)\right] \\
& \leq \frac{1}{n}\left\|\varphi_{j}^{\prime}\right\|_{\infty}^{2} \int_{A}\left(\hat{F}_{0}(x)-F_{0}(x)\right)^{2} f(x) d x
\end{aligned}
$$

by using the mean-value theorem. Since $\left\|\varphi_{j}^{\prime}\right\|_{\infty}^{2} \leq 8 \pi^{2} D_{m}^{2}$ in the Fourier basis, this leads to

$$
\mathbb{E}\left[T_{1}^{m}\right] \leq \frac{8 \pi^{2}}{n} D_{m}^{3} \int_{A} \mathbb{E}\left[\left(\hat{F}_{0}(x)-F_{0}(x)\right)^{2}\right] f(x) d x
$$

Notice finally that $\mathbb{E}\left[\left(\hat{F}_{0}(x)-F_{0}(x)\right)^{2}\right]=\operatorname{Var}\left(\hat{F}_{0}(x)\right)=\left(F_{0}(x)\left(1-F_{0}(x)\right)\right) / n_{0} \leq 1 /\left(4 n_{0}\right)$. This permits to conclude the proof of Lemma 9.
5.2.2. Proof of Lemma 10. Arguing as in the beginning of the proof of Lemma 9 yields

$$
\begin{equation*}
T_{2}^{m}=\sum_{j=1}^{D_{m}}\left(\int_{A}\left(\varphi_{j} \circ \hat{F}_{0}(x)-\varphi_{j} \circ F_{0}(x)\right) f(x) d x\right)^{2} . \tag{14}
\end{equation*}
$$

We apply the Taylor formula to the function φ_{j}, with the Lagrange form for the remainder. There exists a random number $\hat{\alpha}_{j, n_{0}, x}$ such that the following decomposition holds: $T_{2}^{m} \leq 3 T_{2,1}^{m}+3 T_{2,2}^{m}+$ $3 T_{2,3}^{m}$, where

$$
\begin{aligned}
T_{2,1}^{m} & =\sum_{j=1}^{D_{m}}\left(\int_{A} \varphi_{j}^{\prime}\left(F_{0}(x)\right)\left(\hat{F}_{0}(x)-F_{0}(x)\right) f(x) d x\right)^{2} \\
T_{2,2}^{m} & =\sum_{j=1}^{D_{m}}\left(\int_{A} \varphi_{j}^{\prime \prime}\left(F_{0}(x)\right) \frac{\left(\hat{F}_{0}(x)-F_{0}(x)\right)^{2}}{2} f(x) d x\right)^{2} \\
T_{2,3}^{m}= & \sum_{j=1}^{D_{m}}\left(\int_{A} \varphi_{j}^{(3)}\left(\hat{\alpha}_{j, n_{0}, x}\right) \frac{\left(\hat{F}_{0}(x)-F_{0}(x)\right)^{3}}{6} f(x) d x\right)^{2} .
\end{aligned}
$$

We now bound each of these three terms. Let us begin with $T_{2,1}^{m}$. The change of variables $u=F_{0}(x)$ permits to obtain first

$$
T_{2,1}^{m}=\sum_{j=1}^{D_{m}}\left(\int_{(0 ; 1)} \varphi_{j}^{\prime}(u)\left(\widehat{U}_{0}(u)-u\right) r(u) d u\right)^{2},
$$

and, with the definition of $\widehat{U}_{0}(u)$, we get

$$
T_{2,1}^{m}=\sum_{j=1}^{D_{m}}\left(\frac{1}{n_{0}} \sum_{i=1}^{n_{0}} B_{i, j}-\mathbb{E}\left[B_{i, j}\right]\right)^{2}, \quad \text { with } B_{i, j}=\int_{U_{0, i}}^{1} r(u) \varphi_{j}^{\prime}(u) d u .
$$

An integration by parts for $B_{i, j}$ leads to another splitting $T_{2,1}^{m} \leq 2 T_{2,1,1}^{m}+2 T_{2,1,2}^{m}$, with notations

$$
\begin{aligned}
T_{2,1,1}^{m} & =\sum_{j=1}^{D_{m}}\left\{\frac{1}{n_{0}} \sum_{i=1}^{n_{0}} r\left(U_{0, i}\right) \varphi_{j}\left(U_{0, i}\right)-\mathbb{E}\left[r\left(U_{0, i}\right) \varphi_{j}\left(U_{0, i}\right)\right]\right\}^{2} \\
T_{2,1,2}^{m} & =\sum_{j=1}^{D_{m}}\left\{\int_{(0 ; 1)} r^{\prime}(u)\left(\widehat{U}_{0}(u)-u\right) \varphi_{j}(u) d u\right\}^{2}
\end{aligned}
$$

The expectation of the first term is a variance and is bounded as follows:

$$
\mathbb{E}\left[T_{2,1,1}^{m}\right] \leq \frac{1}{n_{0}} \sum_{j=1}^{D_{m}} \mathbb{E}\left[\left(r\left(U_{0,1}\right) \varphi_{j}\left(U_{0,1}\right)\right)^{2}\right] \leq \int_{0}^{1} r(u)^{2} d u \frac{D_{m}}{n_{0}} .
$$

For $T_{2,1,2}^{m}$, we use the definitions and properties of the orthogonal projection operator $\Pi_{S_{m}}$ on the space S_{m} :

$$
\begin{aligned}
T_{2,1,2}^{m} & =\sum_{j=1}^{D_{m}}\left(\left\langle r^{\prime}\left(\widehat{U}_{0}-i d\right), \varphi_{j}\right\rangle_{(0 ; 1)}\right)^{2}=\left\|\Pi_{S_{m}}\left(r^{\prime}\left(\widehat{U}_{0}-i d\right)\right)\right\|^{2}, \\
& \leq\left\|r^{\prime}\left(\widehat{U}_{0}-i d\right)\right\|^{2} \leq\left\|r^{\prime}\right\|^{2}\left\|\widehat{U}_{0}-i d\right\|_{\infty}^{2} .
\end{aligned}
$$

Applying Proposition 6 proves that $\mathbb{E}\left[T_{2,1,2}^{m}\right] \leq C_{2}\left\|r^{\prime}\right\|^{2} / n_{0}$. Therefore,

$$
\begin{equation*}
\mathbb{E}\left[T_{2,1}^{m}\right] \leq\|r\|^{2} \frac{D_{m}}{n_{0}}+C_{2}\left\|r^{\prime}\right\|^{2} \frac{1}{n_{0}} . \tag{15}
\end{equation*}
$$

Consider now $T_{2,2}^{m}$. The trigonometric basis satisfies $\varphi_{j}^{\prime \prime}=-\left(\pi \mu_{j}\right)^{2} \varphi_{j}$, with $\mu_{j}=j$ for even $j \geq 2$, and $\mu_{j}=j-1$ for odd $j \geq 2$. We thus have,

$$
\begin{aligned}
\mathbb{E}\left[T_{2,2}^{m}\right] & =\left(\pi^{4} / 4\right) \mathbb{E}\left[\sum_{j=1}^{D_{m}}\left\{\int_{(0 ; 1)} r(u)\left(\widehat{U}_{0}(u)-u\right)^{2} \mu_{j}^{2} \varphi_{j}(u) d u\right\}^{2}\right] \\
& \leq\left(\pi^{4} / 4\right) D_{m}^{4} \mathbb{E}\left[\sum_{j=1}^{D_{m}}\left\{\left\langle r\left(\widehat{U}_{0}-i d\right)^{2}, \varphi_{j}\right\rangle_{(0 ; 1)}\right\}^{2}\right], \\
& \leq\left(\pi^{4} / 4\right) D_{m}^{4} \mathbb{E}\left[\left\|r\left(\widehat{U}_{0}-i d\right)^{2}\right\|^{2}\right] \leq\left(\pi^{4} / 4\right) D_{m}^{4} \mathbb{E}\left[\left\|\widehat{U}_{0}-i d\right\|_{\infty}^{4}\right] \int_{(0 ; 1)} r^{2}(u) d u .
\end{aligned}
$$

Thanks to Proposition 6, we obtain

$$
\begin{equation*}
\mathbb{E}\left[T_{2,1}^{m}\right] \leq C_{4}\left(\pi^{4} / 4\right)\|r\|^{2} \frac{D_{m}^{4}}{n_{0}^{2}} \tag{16}
\end{equation*}
$$

The last term is then easily controlled, using also Proposition 6:

$$
\begin{equation*}
\mathbb{E}\left[T_{2,3}^{m}\right] \leq \frac{32 \pi^{6}}{9} \sum_{j=1}^{D_{m}}\|r\|^{2} \mathbb{E}\left[\left\|\widehat{U}_{0}-i d\right\|_{\infty}^{6}\right] \leq \frac{32 \pi^{6} C_{6}}{9}\|r\|^{2} \frac{D_{m}^{7}}{n_{0}^{3}} \tag{17}
\end{equation*}
$$

Lemma 10 is proved by gathering (15), (16) and (17).
5.3. Proof of Theorem 2. In the proof, C is a constant which may change from line to line, and is independent of all $m \in \mathcal{M}, n$, and n_{0}. Let $m \in \mathcal{M}$ be fixed. The following decomposition holds:

$$
\begin{aligned}
\left\|\hat{r}_{\hat{m}}\left(., \hat{F}_{0}\right)-r\right\|^{2} \leq & 3\left\|\hat{r}_{\hat{m}}\left(., \hat{F}_{0}\right)-\hat{r}_{m \wedge \hat{m}}\left(., \hat{F}_{0}\right)\right\|^{2} \\
& +3\left\|\hat{r}_{m \wedge \hat{m}}\left(., \hat{F}_{0}\right)-\hat{r}_{m}\left(., \hat{F}_{0}\right)\right\|^{2}+3\left\|\hat{r}_{m}\left(., \hat{F}_{0}\right)-r\right\|^{2}
\end{aligned}
$$

We use successively the definition of $A(\hat{m}), A(m)$, and \hat{m} to obtain

$$
\left\|\hat{r}_{\hat{m}}\left(., \hat{F}_{0}\right)-r\right\|^{2} \leq 6(A(m)+V(m))+3\left\|\hat{r}_{m}\left(., \hat{F}_{0}\right)-r\right\|^{2}
$$

Keeping in mind that we can split $\left\|\hat{r}_{m}\left(., \hat{F}_{0}\right)-r\right\|^{2} \leq 3 T_{1}^{m}+3 T_{2}^{m}+3\left\|\hat{r}_{m}\left(., F_{0}\right)-r\right\|^{2}$ with the notations of Section 5.2, we derive from (4) and (5):

$$
\left\|\hat{r}_{\hat{m}}\left(., \hat{F}_{0}\right)-r\right\|^{2} \leq 6(A(m)+V(m))+9 T_{1}^{m}+9 T_{2}^{m}+9 \frac{D_{m}}{n}+9\left\|r_{m}-r\right\|^{2}
$$

We also apply Lemmas 9 and 10. Taking into account that $D_{m} \leq \kappa n_{0}^{1 / 3}$, we thus have

$$
\begin{aligned}
\mathbb{E}\left[\left\|\hat{r}_{\hat{m}}\left(., \hat{F}_{0}\right)-r\right\|^{2}\right] \leq & 6 \mathbb{E}[A(m)]+6 V(m)+C \frac{D_{m}}{n}+C\|r\|^{2} \frac{D_{m}}{n_{0}} \\
& +9\left\|r_{m}-r\right\|^{2}+\frac{C}{n_{0}}+\frac{C}{n}
\end{aligned}
$$

Therefore, the conclusion of Theorem 2 is the result of the following lemma.
Lemma 11. Under the assumptions of Theorem 2, there exists a constant $C>0$ such that, for any $m \in \mathcal{M}$,

$$
\mathbb{E}[A(m)] \leq C\left(\frac{1}{n}+\frac{1}{n_{0}}\right)+12\left\|r_{m}-r\right\|^{2}
$$

5.3.1. Proof of Lemma 11. To study $A\left(m, \hat{F}_{0}\right)$, we write, for $m^{\prime} \in \mathcal{M}$.

$$
\begin{aligned}
\left\|\hat{r}_{m^{\prime}}\left(., \hat{F}_{0}\right)-\hat{r}_{m \wedge m^{\prime}}\left(., \hat{F}_{0}\right)\right\|^{2} \leq & 3\left\|\hat{r}_{m^{\prime}}\left(., \hat{F}_{0}\right)-r_{m^{\prime}}\right\|^{2}+3\left\|r_{m^{\prime}}-r_{m \wedge m^{\prime}}\right\|^{2} \\
& +3\left\|r_{m \wedge m^{\prime}}-\hat{r}_{m \wedge m^{\prime}}\left(., \hat{F}_{0}\right)\right\|^{2}
\end{aligned}
$$

Let $\mathcal{S}\left(p_{m^{\prime}}\right)$ be the set $\left\{t \in S_{p_{m^{\prime}}},\|t\|=1\right\}$, for $p_{m^{\prime}}=m^{\prime}$ or $p_{m^{\prime}}=m \wedge m^{\prime}$. We note that

$$
\begin{equation*}
\left\|r_{p_{m^{\prime}}}-\hat{r}_{p_{m^{\prime}}}\left(., \hat{F}_{0}\right)\right\|^{2}=\sum_{j=1}^{D_{p_{m^{\prime}}}}\left(\tilde{\nu}_{n}\left(\varphi_{j}\right)\right)^{2}=\sup _{t \in \mathcal{S}\left(p_{m^{\prime}}\right)} \tilde{\nu}_{n}(t)^{2} \tag{18}
\end{equation*}
$$

with $\tilde{\nu}_{n}(t)=n^{-1} \sum_{i=1}^{n} t \circ \hat{F}_{0}\left(X_{i}\right)-\mathbb{E}\left[t \circ F_{0}\left(X_{i}\right)\right]$. Since the empirical process $\tilde{\nu}_{n}$ is not centered, we consider the following splitting: $\left(\tilde{\nu}_{n}(t)\right)^{2} \leq 2 \nu_{n}^{2}(t)+2\left((1 / n) \sum_{i=1}^{n}\left(t \circ \hat{F}_{0}\left(X_{i}\right)-t \circ F_{0}\left(X_{i}\right)\right)\right)^{2}$, with

$$
\begin{equation*}
\nu_{n}(t)=\frac{1}{n} \sum_{i=1}^{n}\left(t \circ F_{0}\left(X_{i}\right)-\mathbb{E}\left[t \circ F_{0}\left(X_{i}\right)\right]\right) \tag{19}
\end{equation*}
$$

But we also have

$$
\sup _{t \in \mathcal{S}\left(p_{m^{\prime}}\right)}\left(\frac{1}{n} \sum_{i=1}^{n}\left(t \circ \hat{F}_{0}\left(X_{i}\right)-t \circ F_{0}\left(X_{i}\right)\right)\right)^{2}=\sum_{j=1}^{D_{p_{m^{\prime}}}}\left(\hat{a}_{j}^{\hat{F}_{0}}-\hat{a}_{j}^{F_{0}}\right)^{2} \leq 2 T_{1}^{p_{m^{\prime}}}+2 T_{2}^{p_{m^{\prime}}}
$$

with the notations of Section 5.2. This shows that

$$
\begin{equation*}
\left\|r_{p_{m^{\prime}}}-\hat{r}_{p_{m^{\prime}}}\left(., \hat{F}_{0}\right)\right\|^{2} \leq 2 \sup _{t \in \mathcal{S}\left(p_{m^{\prime}}\right)}\left(\nu_{n}(t)\right)^{2}+4 T_{1}^{p_{m^{\prime}}}+4 T_{2}^{p_{m^{\prime}}} \tag{20}
\end{equation*}
$$

We thus have

$$
\begin{aligned}
\left\|\hat{r}_{m^{\prime}}\left(., \hat{F}_{0}\right)-\hat{r}_{m \wedge m^{\prime}}\left(., \hat{F}_{0}\right)\right\|^{2} \leq & 6 \sup _{t \in \mathcal{S}\left(m^{\prime}\right)}\left(\nu_{n}(t)\right)^{2}+6 \sup _{t \in \mathcal{S}\left(m \wedge m^{\prime}\right)}\left(\nu_{n}(t)\right)^{2}+12 T_{2}^{m^{\prime}}+12 T_{2}^{m \wedge m^{\prime}} \\
& +12 T_{1}^{m^{\prime}}+12 T_{1}^{m \wedge m^{\prime}}+3 \| r_{m^{\prime}}-r_{m \wedge m^{\prime} \|^{2}} .
\end{aligned}
$$

We get back to the definition of $A(m)$. To do so, we subtract $V\left(m^{\prime}\right)$. For convenience, we split it into two terms: $V\left(m^{\prime}\right)=V^{(1)}\left(m^{\prime}\right)+V^{(2)}\left(m^{\prime}\right)$, with $V^{(1)}\left(m^{\prime}\right)=c_{0} D_{m} / n$, and $V^{(2)}\left(m^{\prime}\right)=$ $c_{0}\|r\|^{2} D_{m} / n_{0}$. Thus,

$$
\begin{aligned}
& \mathbb{E}[A(m)] \leq 6 \mathbb{E}\left[\max _{m^{\prime} \in \mathcal{M}}\left(\sup _{t \in \mathcal{S}\left(m^{\prime}\right)}\left(\nu_{n}(t)\right)^{2}-\frac{V^{(1)}\left(m^{\prime}\right)}{12}\right)_{+}\right]+3 \max _{m^{\prime} \in \mathcal{M}}\left\|r_{m^{\prime}}-r_{m \wedge m^{\prime}}\right\|^{2} \\
+ & 6 \mathbb{E}\left[\max _{m^{\prime} \in \mathcal{M}}\left(\sup _{t \in \mathcal{S}\left(m \wedge m^{\prime}\right)}\left(\nu_{n}(t)\right)^{2}-\frac{V^{(1)}\left(m^{\prime}\right)}{12}\right)_{+}\right]+12 \mathbb{E}\left[\max _{m^{\prime} \in \mathcal{M}}\left(T_{2}^{m^{\prime}}-\frac{V^{(2)}\left(m^{\prime}\right)}{24}\right)_{+}\right] \\
+ & 12 \mathbb{E}\left[\max _{m^{\prime} \in \mathcal{M}}\left(T_{2}^{m \wedge m^{\prime}}-\frac{V^{(2)}\left(m^{\prime}\right)}{24}\right)_{+}\right]+12 \mathbb{E}\left[\max _{m^{\prime} \in \mathcal{M}} T_{1}^{m^{\prime}}\right]+12 \mathbb{E}\left[\max _{m^{\prime} \in \mathcal{M}} T_{1}^{m \wedge m^{\prime}}\right] .
\end{aligned}
$$

For the deterministic term, we notice that

$$
\max _{m^{\prime} \in \mathcal{M}}\left\|r_{m^{\prime}}-r_{m \wedge m^{\prime}}\right\|^{2} \leq 2 \max _{\substack{m^{\prime} \in \mathcal{M} \\ m \leq m^{\prime}}}\left\|r_{m^{\prime}}-r\right\|^{2}+2\left\|r-r_{m}\right\|^{2}
$$

If $m \leq m^{\prime}$, the spaces are nested $S_{m} \subset S_{m^{\prime}}$, thus the orthogonal projections r_{m} and $r_{m^{\prime}}$ of r onto S_{m} and S_{m}^{\prime} respectively satisfy $\left\|r_{m^{\prime}}-r\right\|^{2} \leq\left\|r_{m}-r\right\|^{2}$. Thus,

$$
\begin{equation*}
\max _{m^{\prime} \in \mathcal{M}}\left\|r_{m^{\prime}}-r_{m \wedge m^{\prime}}\right\|^{2} \leq 4\left\|r_{m}-r\right\|^{2} \tag{21}
\end{equation*}
$$

Moreover, for $p_{m^{\prime}}=m^{\prime}$ or $p_{m^{\prime}}=m \wedge m^{\prime}, T_{1}^{p_{m^{\prime}}} \leq T_{1}^{m_{\max }}$ (recall that $m_{\text {max }}$ is the largest index in the collection $\mathcal{M})$. Therefore,

$$
12 \mathbb{E}\left[\max _{m^{\prime} \in \mathcal{M}} T_{1}^{m^{\prime}}\right]+12 \mathbb{E}\left[\max _{m^{\prime} \in \mathcal{M}} T_{1}^{m \wedge m^{\prime}}\right] \leq 24 \mathbb{E}\left[T_{1}^{m_{\max }}\right] \leq C \frac{D_{m_{\max }}^{3}}{n n_{0}} \leq \frac{C}{n} .
$$

Consequently, we have at this stage

$$
\begin{aligned}
\mathbb{E}[A(m)] \leq & \frac{C}{n}+12\left\|r_{m}-r\right\|^{2}+6 \mathbb{E}\left[\max _{m^{\prime} \in \mathcal{M}}\left(\sup _{t \in \mathcal{S}\left(m^{\prime}\right)}\left(\nu_{n}(t)\right)^{2}-\frac{V^{(1)}\left(m^{\prime}\right)}{12}\right)_{+}\right] \\
& +6 \mathbb{E}\left[\max _{m^{\prime} \in \mathcal{M}}\left(\sup _{t \in \mathcal{S}\left(m \wedge m^{\prime}\right)}\left(\nu_{n}(t)\right)^{2}-\frac{V^{(1)}\left(m^{\prime}\right)}{12}\right)_{+}\right] \\
& +12 \mathbb{E}\left[\max _{m^{\prime} \in \mathcal{M}}\left(T_{2}^{m^{\prime}}-\frac{V^{(2)}\left(m^{\prime}\right)}{24}\right)_{+}\right]+12 \mathbb{E}\left[\max _{m^{\prime} \in \mathcal{M}}\left(T_{2}^{m \wedge m^{\prime}}-\frac{V^{(2)}\left(m^{\prime}\right)}{24}\right)_{+}\right] .
\end{aligned}
$$

Since $V^{(l)}\left(m^{\prime}\right) \geq V^{(l)}\left(m^{\prime} \wedge m\right)$ it remains to bound the two following terms:

$$
\mathbb{E}\left[\max _{m^{\prime} \in \mathcal{M}}\left(\sup _{t \in \mathcal{S}\left(p_{m^{\prime}}\right)}\left(\nu_{n}(t)\right)^{2}-\frac{V^{(1)}\left(p_{m^{\prime}}\right)}{12}\right)_{+}\right] \text {and } \mathbb{E}\left[\max _{m^{\prime} \in \mathcal{M}}\left(T_{2}^{p_{m^{\prime}}}-\frac{V^{(2)}\left(p_{m^{\prime}}\right)}{24}\right)_{+}\right]
$$

We use the two following lemmas, which are proved below.
Lemma 12. Assume that r is bounded on $(0 ; 1)$. The deviations of the empirical process ν_{n} defined by (19) can be controlled as follows,

$$
\forall \delta>0, \mathbb{E}\left[\max _{m^{\prime} \in \mathcal{M}}\left\{\sup _{t \in \mathcal{S}\left(p_{m^{\prime}}\right)} \nu_{n}^{2}(t)-\bar{V}_{\delta}\left(p_{m^{\prime}}\right)\right\}_{+}\right] \leq \frac{C(\delta)}{n},
$$

where $\bar{V}_{\delta}\left(p_{m^{\prime}}\right)=2(1+2 \delta) D_{p_{m^{\prime}}} / n$, and $C(\delta)$ a constant which depends on δ.
We fix a $\delta>0$ (e.g. $\delta=1 / 2$). We choose c_{0} in the definition of V (see (7)) large enough to have $V^{(1)}\left(p_{m^{\prime}}\right) / 12 \geq \bar{V}_{\delta}\left(p_{m^{\prime}}\right)$, for every m^{\prime}. The inequality of Lemma 12 with $V^{(1)}\left(p_{m^{\prime}}\right)$ as a replacement for $\bar{V}_{\delta}\left(p_{m^{\prime}}\right)$.

Lemma 13. Under the assumptions of Theorem 2,

$$
\mathbb{E}\left[\max _{m^{\prime} \in \mathcal{M}}\left(T_{2}^{p_{m^{\prime}}}-V_{2}\left(p_{m^{\prime}}\right)\right)_{+}\right] \leq \frac{C}{n_{0}},
$$

with $V_{2}\left(p_{m^{\prime}}\right)=c_{2}\|r\|^{2} D_{p_{m}^{\prime}} / n_{0}, c_{2}$ a positive constant large enough, and C depending on the basis, on r, and on the constants C_{p} of Proposition 6.

We choose c_{0} in the definition of V (see (7)) large enough to have $V^{(2)}\left(p_{m^{\prime}}\right) / 24 \geq V_{2}\left(p_{m^{\prime}}\right)$, for every m^{\prime}. This enables to apply Lemma 13 with $V^{(2)}\left(p_{m^{\prime}}\right)$ as a replacement for $V_{2}\left(p_{m^{\prime}}\right)$.

The proof of Lemma 11 is completed.
5.3.2. Proof of Lemma 12. We roughly bound

$$
\mathbb{E}\left[\max _{m^{\prime} \in \mathcal{M}}\left\{\sup _{t \in \mathcal{S}\left(p_{m^{\prime}}\right)} \nu_{n}^{2}(t)-\bar{V}_{\delta}\left(p_{m^{\prime}}\right)\right\}_{+}\right] \leq \sum_{m^{\prime} \in \mathcal{M}} \mathbb{E}\left[\left\{\sup _{t \in \mathcal{S}\left(p_{m^{\prime}}\right)} \nu_{n}^{2}(t)-\bar{V}_{\delta}\left(p_{m^{\prime}}\right)\right\}_{+}\right] .
$$

We apply the Talagrand Inequality recalled in Proposition 7. To this aim, we compute M_{1}, H^{2} and v. Write for a moment $\nu_{n}(t)=(1 / n) \sum_{i=1}^{n} \psi_{t}\left(X_{i}\right)-\mathbb{E}\left[\psi_{t}\left(X_{i}\right)\right]$, with $\psi_{t}(x)=t \circ F_{0}(x)$.

- First, for $t \in \mathcal{S}\left(p_{m^{\prime}}\right), \sup _{x \in A}\left|\psi_{t}(x)\right| \leq\|t\|_{\infty} \leq \sqrt{D_{p_{m^{\prime}}}}\|t\|=\sqrt{D_{p_{m^{\prime}}}}=: M_{1}$.
- Next, we develop $t \in \mathcal{S}\left(p_{m^{\prime}}\right)$ in the orthogonal basis $\left(\varphi_{j}\right)_{j=1, \ldots, D_{p_{m^{\prime}}}}$. This leads to

$$
\mathbb{E}\left[\sup _{t \in \mathcal{S}\left(p_{m^{\prime}}\right)} \nu_{n}^{2}(t)\right] \leq \sum_{j=1}^{D_{p_{m^{\prime}}}} \mathbb{E}\left[\nu_{n}\left(\varphi_{j}^{2}\right)\right]=\sum_{j=1}^{D_{p_{m^{\prime}}}} \mathbb{E}\left[\left(\hat{a}_{j}^{F_{0}}-a_{j}\right)^{2}\right] \leq \frac{D_{p_{m^{\prime}}}}{n}=: H^{2},
$$

thanks to the upper-bound for the variance term (see (5)).

- Last, for $t \in \mathcal{S}\left(p_{m^{\prime}}\right), \operatorname{Var}\left(\psi_{t}\left(X_{1}\right)\right) \leq \int_{A} t^{2}\left(F_{0}(x)\right) f(x) d x=\int_{(0 ; 1)} t^{2}(u) r(u) d u \leq\|r\|_{\infty}\|t\|^{2}=$ $\|r\|_{\infty}=: v$.

Inequality (12) gives, for $\delta>0$,

$$
\begin{aligned}
\sum_{m^{\prime} \in \mathcal{M}} \mathbb{E}\left[\left(\sup _{t \in \mathcal{S}\left(p_{m^{\prime}}\right)} \nu_{n}^{2}(t)-c(\delta) H^{2}\right)_{+}\right] \leq & c_{1} \sum_{m^{\prime} \in \mathcal{M}}\left\{\frac{1}{n} \exp \left(-c_{2} \delta D_{p_{m^{\prime}}}\right)\right. \\
& \left.+\frac{D_{p_{m^{\prime}}}}{C^{2}(\delta) n^{2}} \exp \left(-c_{3} C(\delta) \sqrt{\delta} \sqrt{n}\right)\right\}
\end{aligned}
$$

where $c_{l}, l=1,2,3$ are three constants. Now, it is sufficient to use that $D_{p_{m}^{\prime}}=2 p_{m^{\prime}}+1$, and that the cardinal of \mathcal{M} is bounded by n to end the proof of Lemma 12 .
5.3.3. Proof of Lemma 13. The proof is based on the proof of Lemma 10, Section 5.2.2. Let us abbreviate $p_{m^{\prime}}$ by p. We proceed as in this proof and obtain $T_{2}^{p} \leq 6 T_{2,1,1}^{p}+6 T_{2,1,2}^{p}+3 T_{2,2}^{p}+3 T_{2,3}^{p}$. Thus,

$$
\begin{align*}
\mathbb{E}\left[\max _{m^{\prime} \in \mathcal{M}}\left(T_{2}^{p}-V_{2}(p)\right)_{+}\right] \leq & \mathbb{E}\left[\max _{m^{\prime} \in \mathcal{M}}\left(6 T_{2,1,1}^{p}-V_{2}(p) / 3\right)_{+}\right]+\mathbb{E}\left[\max _{m^{\prime} \in \mathcal{M}} 6 T_{2,1,2}^{p}\right] \tag{22}\\
& +\mathbb{E}\left[\max _{m^{\prime} \in \mathcal{M}}\left(3 T_{2,2}^{p}-V_{2}(p) / 3\right)_{+}\right] \\
& +\mathbb{E}\left[\max _{m^{\prime} \in \mathcal{M}}\left(3 T_{2,3}^{p}-V_{2}(p) / 3\right)_{+}\right] .
\end{align*}
$$

We do not subtract $V(p)$ to one of the term, since we immediately derive from Section 5.2.2

$$
\begin{equation*}
\mathbb{E}\left[\max _{m^{\prime} \in \mathcal{M}} 6 T_{2,1,2}^{p}\right] \leq \mathbb{E}\left[6 T_{2,1,2}^{m_{\max }}\right] \leq 6 C_{2}\left\|r^{\prime}\right\|^{2} / n_{0} \tag{23}
\end{equation*}
$$

For the term depending on $T_{2,1,1}^{p}$, note that $T_{2,1,1}^{p}=\sum_{j=1}^{D_{p}}\left(\nu_{n_{0}}^{b}\left(\varphi_{j}\right)\right)^{2}$, with

$$
\nu_{n_{0}}^{b}(t)=\frac{1}{n_{0}} \sum_{i_{0}=1}^{n_{0}} \psi_{t}\left(X_{0, i_{0}}\right)-\mathbb{E}\left[\psi_{t}\left(X_{0, i}\right)\right], \text { with } \psi_{t}(x)=r\left(F_{0}(x)\right) t\left(F_{0}(x)\right) .
$$

We proceed as in (18) to write $T_{2,1,1}^{p}=\sup _{t \in \mathcal{S}(p)}\left(\nu_{n_{0}}^{b}(t)\right)^{2}$. We anew apply the Talagrand Inequality (Proposition 7). We easily compute $M_{1}=\|r\|_{\infty} \sqrt{D_{p}}$, and $v=\|r\|_{\infty}^{2}$. For H^{2}, the same computations as in Lemma 10 give

$$
\mathbb{E}\left[\sup _{t \in \mathcal{S}(p)}\left(\nu_{n_{0}}^{b}(t)\right)^{2}\right]=\mathbb{E}\left[T_{2,1,1}^{p}\right] \leq\|r\|^{2} \frac{D_{p}}{n_{0}}:=H^{2} .
$$

The result is the following, with $V_{2,1,1}(p)=6 \times 2(1+2 \delta)\|r\|^{2} D_{p} / n_{0}, \delta>0$,

$$
\begin{equation*}
\mathbb{E}\left[\max _{m^{\prime} \in \mathcal{M}}\left(6 T_{2,1,1}^{p}-V_{2,1,1}(p)\right)_{+}\right] \leq \frac{C}{n_{0}} . \tag{24}
\end{equation*}
$$

For the term in which $T_{2,2}^{p}$ is involved, we begin with

$$
\mathbb{E}\left[\max _{m^{\prime} \in \mathcal{M}}\left(3 T_{2,2}^{p}-\frac{V_{2}(p)}{3}\right)_{+}\right] \leq \sum_{m^{\prime} \in \mathcal{M}} \mathbb{E}\left[\left(3 T_{2,2}^{p}-\frac{V_{2}(p)}{3}\right)_{+}\right],
$$

and compute the right-hand side, for a fixed index p. We prove in Section 5.2.2 that $T_{2,2}^{p} \leq$ $\left(\pi^{4} / 4\right)\|r\|^{2} D_{p}^{4}\left\|\widehat{U}_{0}-i d\right\|_{\infty}^{4}$. Corollary 3 with $p=4$ gives, for all $\kappa>0$,

$$
\mathbb{E}\left[\left(\left\|\widehat{U}_{0}-i d\right\|_{\infty}^{4}-\kappa \frac{\ln ^{2}\left(n_{0}\right)}{n_{0}^{2}}\right)_{+}\right] \leq C n_{0}^{-\frac{1}{\sqrt{2}} \kappa^{1 / 2}} .
$$

Therefore，denoting by $V_{2,2}(p)=\left(3 \pi^{4} / 4\right)\|r\|^{2} \kappa \frac{D_{P}^{4} \ln ^{2}\left(n_{0}\right)}{n_{0}^{2}}$ ，

$$
\begin{equation*}
\mathbb{E}\left[\max _{m^{\prime} \in \mathcal{M}}\left(3 T_{2,2}^{p}-V_{2,2}(p)\right)_{+}\right] \leq C \sum_{m^{\prime} \in \mathcal{M}} D_{p}^{4} n_{0}^{-\frac{1}{\sqrt{2}} \kappa^{1 / 2}} \tag{25}
\end{equation*}
$$

But we roughly bound $\sum_{m^{\prime} \in \mathcal{M}} D_{p}^{4} \leq D_{m_{\max }}^{5} \leq n_{0}^{5}$ ．The right－hand side of（25）is thus bounded by $C n_{0}^{5-\sqrt{\kappa / 2}}$ ，with c a constant，and this last bound is smaller than C / n_{0} if κ is large enough． Since we assume $D_{p} \leq n_{0}^{1 / 3} / \ln ^{2 / 3}(n)$ ，we have $V_{2,2}(p) \leq V_{2,2}^{b i s}(p)=\left(3 \pi^{4} / 4\right)\|r\|^{2} \kappa D_{p} / n_{0}$ ，and（25） is still true with $V_{2,2}$ replaced by $V_{2,2}^{\text {bis }}$ ．

We proceed similarly for the term which depends on $T_{2,3}^{p}$ ．We see in Section 5.2 .2 that $T_{2,3}^{p} \leq$ $\left(32 \pi^{6} / 9\right)\|r\|^{2} D_{p}^{7}\left\|\widehat{U}_{0}-i d\right\|_{\infty}^{6}$ ，and thanks to Corollary 3 with $p=6$

$$
\mathbb{E}\left[\left(\left\|\widehat{U}_{0}-i d\right\|_{\infty}^{6}-\kappa \frac{\ln ^{3}\left(n_{0}\right)}{n_{0}^{3}}\right)_{+}\right] \leq C n_{0}^{-\frac{1}{2^{1 / 3} \kappa^{2 / 3}}}
$$

Thus，for $V_{2,3}(p)=\left(32 \pi^{6} / 9\right)\|r\|^{2} \kappa D_{p}^{7} \ln ^{3}\left(n_{0}\right) / n_{0}^{3}$ ，

$$
\begin{equation*}
\mathbb{E}\left[\max _{m^{\prime} \in \mathcal{M}}\left(3 T_{2,3}^{p}-V_{2,3}(p)\right)_{+}\right] \leq C \sum_{m^{\prime} \in \mathcal{M}} D_{p}^{4} n_{0}^{-\frac{1}{2^{1 / 3}} \kappa^{2 / 3}} \tag{26}
\end{equation*}
$$

If κ is large enough，the right－hand side of（26）is bounded by C / n_{0} ，and $V_{2,3}$ can be replaced by an upper－bound，if $D_{p} \leq n_{0}^{1 / 3} / \ln ^{1 / 2}(n): V_{2,3}(p) \leq V_{2,3}^{b i s}(p)=\left(32 \pi^{6} / 9\right)\|r\|^{2} \kappa D_{p} / n_{0}$ ．

We gather（23），（24），（25），and（26）in Inequality（22），and choose $V_{2}(p)$ with form $c_{2}\|r\|^{2} D_{p} / n_{0}$ for c_{2} large enough．

5．4．Proof of Theorem 3．We introduce the set

$$
\Lambda=\left\{\left|\frac{\left\|\hat{r}_{m^{*}}\left(., \hat{F}_{0}\right)\right\|}{\|r\|}-1\right|<\frac{1}{2}\right\}
$$

and split

$$
\mathbb{E}\left[\left\|\hat{r}_{\tilde{m}}\left(., \hat{F}_{0}\right)-r\right\|^{2}\right]=\mathbb{E}\left[\left\|\hat{r}_{\tilde{m}}\left(., \hat{F}_{0}\right)-r\right\|^{2} \mathbf{1}_{\Lambda}\right]+\mathbb{E}\left[\left\|\hat{r}_{\tilde{m}}\left(., \hat{F}_{0}\right)-r\right\|^{2} \mathbf{1}_{\Lambda^{c}}\right]
$$

We show in the sequel that the first term give the order of the upper－bound of Theorem 3，and that the probability of the set Λ^{c} is negligible compared to $1 / n+1 / n_{0}$ ．
－Upper－bound for $\mathbb{E}\left[\left\|\hat{r}_{\hat{m}}\left(., \hat{F}_{0}\right)-r\right\|^{2} \mathbf{1}_{\Lambda}\right]$ ．Arguing as in Section 5．3，we first obtain，for $m \in \mathcal{M}$

$$
\left\|\hat{r}_{\tilde{m}}\left(., \hat{F}_{0}\right)-r\right\|^{2} \leq 6(\widetilde{A}(m)+\widetilde{V}(m))+3\left\|\hat{r}_{m}\left(., \hat{F}_{0}\right)-r\right\|^{2}
$$

Moreover，$\widetilde{A}(m) \leq A(m)+\max _{m^{\prime} \in \mathcal{M}}\left(V\left(m^{\prime}\right)-\widetilde{V}\left(m^{\prime}\right)\right)_{+}$．Thus

$$
\begin{aligned}
\left\|\hat{r}_{\tilde{m}}\left(., \hat{F}_{0}\right)-r\right\|^{2} \leq & 6(A(m)+V(m))+3\left\|\hat{r}_{m}\left(., \hat{F}_{0}\right)-r\right\|^{2} \\
& +\max _{m^{\prime} \in \mathcal{M}}\left(V\left(m^{\prime}\right)-\tilde{V}\left(m^{\prime}\right)\right)_{+}+6(\tilde{V}(m)-V(m))
\end{aligned}
$$

For every $m \in \mathcal{M}$ ，

$$
\tilde{V}(m)-V(m)=c_{0} \frac{D_{m}}{n_{0}}\left(4\left\|\hat{r}_{m^{*}}\left(., \hat{F}_{0}\right)\right\|^{2}-\|r\|^{2}\right)
$$

On the set Λ, since $\|r\|<2\left\|\hat{r}_{m *}\left(., \hat{F}_{0}\right)\right\|$, we thus have $\left(V\left(m^{\prime}\right)-\widetilde{V}\left(m^{\prime}\right)\right)_{+}=0$. On this set, we also have : $\left\|\hat{r}_{m *}\left(., \hat{F}_{0}\right)\right\| \leq(3 / 2)\|r\|$,

$$
(\widetilde{V}(m)-V(m)) \leq c_{0} \frac{D_{m}}{n_{0}}\left(4 \times \frac{9}{4}\|r\|^{2}-\|r\|^{2}\right)=8 c_{0}\|r\|^{2} \frac{D_{m}}{n_{0}}
$$

Using also Lemma 11 enables to conclude

$$
\mathbb{E}\left[\left\|\hat{r}_{\tilde{m}}\left(., \hat{F}_{0}\right)-r\right\|^{2} \mathbf{1}_{\Lambda}\right] \leq \min _{m \in \mathcal{M}}\left\{\frac{D_{m}}{n}+\|r\|^{2} \frac{D_{m}}{n_{0}}+15\left\|r_{m}-r\right\|^{2}\right\}+\frac{C}{n}+\frac{C}{n_{0}} .
$$

- Upper-bound for $\mathbb{E}\left[\left\|\hat{r}_{\tilde{m}}\left(., \hat{F}_{0}\right)-r\right\|^{2} \mathbf{1}_{\Lambda^{c}}\right]$. First, $\left\|\hat{r}_{\tilde{m}}\left(., \hat{F}_{0}\right)-r\right\|^{2} \leq 2\left\|\hat{r}_{\tilde{m}}\left(., \hat{F}_{0}\right)\right\|^{2}+2\|r\|^{2}$, and

Thus

$$
\mathbb{E}\left[\left\|\tilde{r}_{\tilde{m}}\left(., \hat{F}_{0}\right)-r\right\|^{2} \mathbf{1}_{\Lambda^{c}}\right] \leq \mathbb{P}\left(\Lambda^{c}\right) 2\left(\min \left(n, n_{0}\right)+2\|r\|^{2}\right)
$$

It remains to bound $\mathbb{P}\left(\Lambda^{c}\right)$. We split

$$
\mathbb{P}\left(\Lambda^{c}\right) \leq \mathbf{1}_{\left\{\left\|r-r_{m^{*}}\right\| \geq \frac{\|r\|}{4}\right\}}+\mathbb{P}\left(\left\|r_{m^{*}}-\hat{r}_{m^{*}}\left(., \hat{F}_{0}\right)\right\| \geq \frac{\|r\|}{4}\right)
$$

Recall that r belongs to the Besov ball $B_{2, \infty}^{\alpha}((0 ; 1), L)$, and that $D_{m *} \geq \ln \left(n_{0}\right)$. Hence, $\| r-$ $r_{m^{*}} \| \leq C D_{m^{*}}^{-\alpha} \leq C\left(\ln \left(n_{0}\right)\right)^{-\alpha}$. This quantity goes to 0 when n_{0} goes to $+\infty$. Therefore, $C\left(\ln \left(n_{0}\right)\right)^{-\alpha} \leq\|r\| / 4$ for n_{0} large enough. Consequently,

$$
\begin{equation*}
\mathbf{1}_{\left\{\left\|r-r_{m^{*}}\right\| \geq \frac{\|r\|}{4}\right\}}=0 \tag{27}
\end{equation*}
$$

Thanks to (20), we also have

$$
\begin{aligned}
\mathbb{P}\left(\left\|r_{m^{*}}-\hat{r}_{m^{*}}\left(., \hat{F}_{0}\right)\right\|^{2} \geq \frac{\|r\|^{2}}{16}\right) \leq & \mathbb{P}\left(\sup _{t \in \mathcal{S}\left(m^{*}\right)}\left(\nu_{n}(t)\right)^{2} \geq \frac{\|r\|^{2}}{3 \times 16}\right) \\
& +\mathbb{P}\left(4 T_{1}^{m^{*}} \geq \frac{\|r\|^{2}}{3 \times 16}\right)+\mathbb{P}\left(4 T_{2}^{m^{*}} \geq \frac{\|r\|^{2}}{3 \times 16}\right)
\end{aligned}
$$

with ν_{n} defined by (19) and $T_{1}^{m^{*}}, T_{2}^{m^{*}}$ by (13). We use (14), and the mean-value theorem to obtain, $T_{2}^{m^{*}} \leq 8 \pi^{2} D_{m^{*}}^{3}\left\|\widehat{U}_{0}-i d\right\|_{\infty}^{2}$. Thus

$$
\begin{aligned}
\mathbb{P}\left(4 T_{2}^{m^{*}} \geq \frac{\|r\|^{2}}{3 \times 16}\right) & \leq \mathbb{P}\left(\left\|\widehat{U}_{0}-i d\right\|_{\infty}^{2} \geq \frac{\|r\|^{2}}{192 D_{m^{*}}^{3} \times 8 \pi^{2}}\right) \\
& \leq C \exp \left(-n_{0} \frac{\|r\|^{2}}{768 \pi^{2} D_{m^{*}}^{3}}\right)
\end{aligned}
$$

by applying Proposition 5 . Since $D_{m^{*}}^{3} \leq n_{0} / \ln ^{2}\left(n_{0}\right)$, we have

$$
\begin{equation*}
\mathbb{P}\left(4 T_{2}^{m^{*}} \geq \frac{\|r\|^{2}}{3 \times 16}\right) \leq C \exp \left(-\frac{\|r\|^{2}}{768 \pi^{2}}\left(\ln \left(n_{0}\right)\right)^{2}\right) \tag{28}
\end{equation*}
$$

The same arguments permit to bound the term in which $T_{1}^{m^{*}}$ is involved. We first note that $T_{1}^{m^{*}} \leq 32 \pi^{2} D_{m^{*}}^{3} \sup _{x \in \mathbb{R}}\left|\hat{F}_{0}(x)-F_{0}(x)\right|^{2}$ and conclude with Proposition 5:

$$
\begin{equation*}
\mathbb{P}\left(4 T_{1}^{m^{*}} \geq \frac{\|r\|^{2}}{48}\right) \leq C \exp \left(-\frac{\|r\|^{2}}{4 \times 768 \pi^{2}}\left(\ln \left(n_{0}\right)\right)^{2}\right) \tag{29}
\end{equation*}
$$

We go back to the term involving the empirical process:

$$
\mathbb{P}\left(\sup _{t \in \mathcal{S}\left(m^{*}\right)}\left(\nu_{n}(t)\right)^{2} \geq \frac{\|r\|^{2}}{48}\right) \leq \sum_{j=1}^{D_{m^{*}}} \mathbb{P}\left(\nu_{n}^{2}\left(\varphi_{j}\right) \geq \frac{\|r\|^{2}}{48 D_{m^{*}}}\right)
$$

Writing $\nu_{n}\left(\varphi_{j}\right)=(1 / n) \sum_{i=1}^{n} Z_{i}^{j}-\mathbb{E}\left[Z_{i}^{j}\right]$ with $Z_{i}^{j}=\varphi_{j}\left(F_{0}\left(X_{i}\right)\right)$ (see (19)) allows to apply the Bernstein Inequality recalled in Proposition 8. We compute $b=\sqrt{D_{m^{*}}}$, and $v=n\|r\|_{\infty}$. This leads, for $u>0$

$$
\mathbb{P}\left(\nu_{n}^{2}\left(\varphi_{j}\right) \geq \sqrt{2\|r\|_{\infty} u}+u \frac{1}{3} \sqrt{D_{m^{*}}}\right) \leq e^{-n u}
$$

Choosing $u=a / D_{m^{*}}^{4}$, for a constant a and using $D_{m^{*}} \geq \ln \left(n_{0}\right)$, we can obtain $\sqrt{2\|r\|_{\infty} u}+$ $u \sqrt{D_{m^{*}}} / 3 \leq\|r\|^{2} / 48 D_{m^{*}}$, for n_{0} large enough, and

$$
\begin{equation*}
\sum_{j=1}^{D_{m^{*}}} \mathbb{P}\left(\nu_{n}^{2}\left(\varphi_{j}\right) \geq \frac{\|r\|^{2}}{48 D_{m^{*}}}\right) \leq D_{m^{*}} \exp \left(-n \frac{a}{D_{m^{*}}^{4}}\right) \tag{30}
\end{equation*}
$$

Putting together (27), (29), (28) and (30), we have proved
$\mathbb{E}\left[\left\|\hat{r}_{\tilde{m}}\left(., \hat{F}_{0}\right)-r\right\|^{2} \mathbf{1}_{\Lambda^{c}}\right] \leq 2\left(\min \left(n, n_{0}\right)+2\|r\|^{2}\right)\left\{C \exp \left(-C\left(\ln \left(n_{0}\right)\right)^{2}\right)+D_{m^{*}} \exp \left(-\frac{n a}{D_{m^{*}}^{4}}\right)\right\}$.
Recall that $D_{m^{*}} \leq C(n / \ln (n))^{1 / 4}$. The last term of this upper-bound is thus negligible compared to $1 / n$ (if a is large enough). The other term has the order $n_{0} \exp \left(-C\left(\ln \left(n_{0}\right)\right)^{2}\right)$, and are thus smaller than C / n_{0}. Finally,

$$
\mathbb{E}\left[\left\|\hat{r}_{\tilde{m}}\left(., \hat{F}_{0}\right)-r\right\|^{2} \mathbf{1}_{\Lambda^{c}}\right] \leq \frac{C}{n_{0}}+\frac{C}{n}
$$

5.5. Proof of Theorem 4. Denote by $\phi_{n, n_{0}}=\left(\min \left(n, n_{0}\right)\right)^{-2 \alpha /(2 \alpha+1)}$. Since there exists a constant $c^{\prime}>0$ (depending on α) such that $\left(n^{-1}+n_{0}^{-1}\right)^{2 \alpha /(2 \alpha+1)} \leq c^{\prime} \phi_{n, n_{0}}$, it is sufficient to prove Inequality (10) with the lower bound $\phi_{n, n_{0}}$. We separate two cases: $n \leq n_{0}$ and $n>n_{0}$. The result comes down to the proof of the two following inequalities:

$$
\begin{align*}
& \inf _{\hat{r}_{n, n_{0}} \in \mathcal{E}_{n}} \sup _{r \in \mathcal{F}_{\alpha}} \mathbb{E}\left[\left\|\hat{r}_{n, n_{0}}-r\right\|^{2}\right] \geq c \phi_{n, n_{0}}=c n^{-2 \alpha /(2 \alpha+1)} \tag{31}\\
& \inf _{\hat{r}_{n, n_{0}} \in \mathcal{E}_{n_{0}}} \sup _{r \in \mathcal{F}_{\alpha}} \mathbb{E}\left[\left\|\hat{r}_{n, n_{0}}-r\right\|^{2}\right] \geq c \phi_{n, n_{0}}=c n_{0}^{-2 \alpha /(2 \alpha+1)} \tag{32}
\end{align*}
$$

where \mathcal{E}_{n} is the set of all possible estimators built with $\left(X_{i}\right)_{i \in\{1, \ldots, n\}}$ and $\left(X_{0, i_{0}}\right)_{i_{0} \in\left\{1, \ldots, n_{0}\right\}}$ when $n \leq n_{0}$, and $\mathcal{E}_{n_{0}}$ the analogous set when $n>n_{0}$.

The proof of each of the Inequalities (31) and (32) is based on the general reduction scheme which can be found in Section 2.6 of Tsybakov (2009): the main idea is to reduce the class of functions \mathcal{F}_{α} to a finite well-chosen subset $\left\{r_{a}, r_{1}, \ldots, r_{M}\right\}, M \geq 2$ such that
(i) $r_{l} \in \mathcal{F}_{\alpha}$, for every $l \in\{a, 1, \ldots, M\}$.
(ii) $\left\|r_{l}-r_{l^{\prime}}\right\|^{2} \geq 2 B_{0} \phi_{n, n_{0}}$, for every $l, l^{\prime} \in\{a, 1, \ldots, M\}, l \neq l^{\prime}$, for a constant $B_{0}>0$.
(iii) For every $l \in\{1, \ldots, M\}, \mathbb{P}_{l}^{\left(n, n_{0}\right)}$ is absolutely continuous with respect to $\mathbb{P}_{a}^{\left(n, n_{0}\right)}$ and there exists a constant $\kappa \in(0 ; 1 / 8)$, such that

$$
\frac{1}{M} \sum_{l=1}^{M} K\left(P_{l}^{\left(n, n_{0}\right)}, P_{a}^{\left(n, n_{0}\right)}\right) \leq \kappa \log (M)
$$

with $K(.,$.$) the Kullback-Leibler divergence, \mathbb{P}_{l}^{\left(n, n_{0}\right)}$ (resp. $\mathbb{P}_{a}^{\left(n, n_{0}\right)}$) the probability distribution of a double sample $\left(X_{i}\right)_{i \in\{1, \ldots, n\}}$ and $\left(X_{0, i_{0}}\right)_{i_{0} \in\left\{1, \ldots, n_{0}\right\}}$ with relative density r_{l} (resp. r_{a}).

If we construct a set of functions which satisfies (i), (ii), and (iii) in each of the cases $n \leq n_{0}$ and $n>n_{0}$, Inequalities (31) and (32), and thus Theorem 4, are a consequence from Theorem 2.5 of Tsybakov (2009).
5.5.1. Construction of the subset $\left\{r_{a}, r_{1}, \ldots, r_{M}\right\}$. It is in the spirit of Härdle et al. (1998) (Section 10.4, Chapter 10). First let $r_{a}=\mathbf{1}_{(0 ; 1)}$. Let also ψ be a regular wavelet with compact support, and $\psi_{j, k}: x \mapsto 2^{j / 2} \psi\left(2^{j} x-k\right)$, for $(j, k) \in \mathbb{Z}^{2}$. We define R_{j} the maximal subset of \mathbb{Z} such that supp $\psi_{j, k} \subset[0 ; 1], k \in R_{j}$ and that $\operatorname{supp} \psi_{j, k} \cap \operatorname{supp} \psi_{j, k^{\prime}}=\emptyset$ if $k \neq k^{\prime}$. The cardinal of R_{j} is $\left|R_{j}\right|=c 2^{j}$, for j an integer and c a constant, both to be chosen below. For all $\varepsilon=\left(\varepsilon_{k}\right)_{k \in R_{j}} \in\{0 ; 1\}^{\left|R_{j}\right|}$, consider

$$
r_{\varepsilon}=r_{a}+\chi_{\varepsilon}, \quad \text { with } \quad \chi_{\varepsilon}=\gamma_{n, n_{0}} \sum_{k \in R_{j}} \varepsilon_{k} \psi_{j, k},
$$

for $\gamma_{n, n_{0}}$ a nonnegative number (decreasing when $\min \left(n, n_{0}\right)$ goes to ∞) defined below.
Now, from the Varshamov-Gilbert bound (see Lemma 2.9 of Tsybakov 2009), there exist a finite subset $\left\{\varepsilon^{(0)}, \ldots, \varepsilon^{(M)}\right\}$ of $\{0 ; 1\}^{\left|R_{j}\right|}$, such that $\varepsilon^{(0)}=(0, \ldots, 0)$, and

$$
\begin{equation*}
\rho\left(\varepsilon^{(l)}, \varepsilon^{\left(l^{\prime}\right)}\right):=\sum_{k \in R_{j}} \mathbf{1}_{\varepsilon_{k}^{(l)} \neq \varepsilon_{k}^{\left(l^{\prime}\right)}} \geq \frac{\left|R_{j}\right|}{8}=\frac{c 2^{j}}{8}, \text { and } M \geq 2^{\left|R_{j}\right| / 8}=c 2^{2^{j} / 8} . \tag{33}
\end{equation*}
$$

We set $r_{l}=r_{\varepsilon(l)}, l \in\{1, \ldots, M\}$ and remark that $r_{a}=r_{\varepsilon^{(0)}}$. In the sequel, we establish the conditions to adjust j and $\gamma_{n, n_{0}}$ such that (i), (ii), and (iii) are verified for the set $\left\{r_{a}, r_{l}, l \in\right.$ $\{1,2, \ldots, M\}\}$. The computations are mainly the same to prove Inequalities (31) and (32), except to check (iii). Thus, we distinguish the two cases only at the end, to conclude.
5.5.2. Conditions which guarantees (i). The funtion r_{a} is a relative density with support $(0 ; 1)$ (density supported by $(0 ; 1)$), and $\left\|r_{a}\right\|_{\alpha, 2}=\left\|r_{a}\right\|=1<L$. Moreover, to have $r_{\varepsilon}(x) \geq 0$ for $x \in(0 ; 1)$, we must suppose $\left\|\chi_{\varepsilon}\right\|_{\infty} \leq 1$, that is

$$
\begin{equation*}
\gamma_{n, n_{0}}{ }^{j / 2} \leq \frac{1}{\|\psi\|_{\infty}} . \tag{34}
\end{equation*}
$$

Since $\int_{\mathbb{R}} \psi(x) d x=0$, we have $\int_{\mathbb{R}} \chi_{\varepsilon}(x) d x=0$, and thus, $\int_{\mathbb{R}} r_{\varepsilon}(x) d x=1$. Therefore, if (34) holds, r_{ε} is also a relative density, for all $\varepsilon \in\{0 ; 1\}^{\left|R_{j}\right|}$. According to Hochmuth (2002) (Theorem 3.5), $\left\|\sum_{k \in R_{j}} \varepsilon_{k} \psi_{j, k}\right\|_{\alpha, 2} \leq 2^{j \alpha}\left\|\sum_{k \in R_{j}} \varepsilon_{k} \psi_{j, k}\right\|$, if ψ smooth enough. Since $\left\|\sum_{k \in R_{j}} \varepsilon_{k} \psi_{j, k}\right\| \leq\left|R_{j}\right|=$ 2^{j}, we deduce

$$
\left\|r_{\varepsilon}\right\|_{\alpha, 2} \leq\left\|r_{a}\right\|_{\alpha, 2}+\left\|\chi_{\varepsilon}\right\|_{\alpha, 2} \leq 1+\gamma_{n, n_{0}} 2^{j \alpha} 2^{j / 2} \leq L,
$$

as soon as the following condition is satisfied:

$$
\begin{equation*}
\gamma_{n, n_{0}} 2^{j \alpha} 2^{j / 2} \leq L-1 \tag{35}
\end{equation*}
$$

5.5.3. Conditions which guarantees (ii). Let $l, l^{\prime} \in\{0,1, \ldots, M\}$. We compute

$$
\left\|r_{l}-r_{l^{\prime}}\right\|^{2}=\gamma_{n, n_{0}}^{2}\left\|\sum_{k \in R_{j}}\left(\varepsilon_{k}^{(l)}-\varepsilon_{k}^{\left(l^{\prime}\right)}\right) \psi_{j, k}\right\|^{2}=\gamma_{n, n_{0}}^{2} \sum_{k \in R_{j}}\left(\varepsilon_{k}^{(l)}-\varepsilon_{k}^{\left(l^{\prime}\right)}\right)^{2}\|\psi\|^{2} .
$$

Thanks to (33), $\left\|r_{l}-r_{l^{\prime}}\right\|^{2}=\gamma_{n, n_{0}}^{2} \rho\left(\varepsilon^{(l)}, \varepsilon^{\left(l^{\prime}\right)}\right)\|\psi\|^{2} \geq 2^{j} \gamma_{n, n_{0}}^{2}\|\psi\|^{2} / 8$. The condition (ii) is thus fulfilled as soon as

$$
\begin{equation*}
\gamma_{n, n_{0}}^{2} 2^{j} \geq \frac{16 B_{0}}{\|\psi\|^{2}} \phi_{n, n_{0}} \tag{36}
\end{equation*}
$$

5.5.4. Conditions which guarantees (iii) and conclusion. For $l \in\{a, 1, \ldots, M\}$, denote by $\left(X_{0}^{l}, X^{l}\right)$ a couple of independent random variables with relative density r_{l}, probability distribution $\mathbb{P}_{l}=$ $\mathbb{P}_{X_{0}^{l}} \otimes \mathbb{P}_{X^{l}}$, marginal density f^{l} and f_{0}^{l}. If $l=a$, remark that the definition of r_{a} requires $f_{0}^{a}=f^{a}$. If $\left(\left(X_{0, i_{0}}^{l}\right)_{i_{0}=1, \ldots, n_{0}},\left(X_{i}^{l}\right)_{i=1, \ldots, n}\right)$ is a double sample distributed as X_{0}^{l} and X^{l}, then its distribution is $\mathbb{P}_{l}^{\left(n, n_{0}\right)}=\mathbb{P}_{X^{l}}^{\otimes n} \otimes \mathbb{P}_{X_{0}^{l}}^{\otimes n_{0}}$. Let now $l \in\{1, \ldots, M\}$ be fixed. The following decomposition holds

$$
\begin{equation*}
K\left(\mathbb{P}_{l}^{\left(n, n_{0}\right)}, \mathbb{P}_{a}^{\left(n, n_{0}\right)}\right)=n K\left(\mathbb{P}_{X^{l}}, \mathbb{P}_{X^{a}}\right)+n_{0} K\left(\mathbb{P}_{X_{0}^{l}}, \mathbb{P}_{X_{0}^{a}}\right) \tag{37}
\end{equation*}
$$

To satisfy (iii), we check that it is possible to obtain $K\left(\mathbb{P}_{l}^{\left(n, n_{0}\right)}, \mathbb{P}_{a}^{\left(n, n_{0}\right)}\right) \leq 2^{j} \kappa \log (2) / 8$. This is sufficient $\operatorname{since} \log (M) \geq 2^{j} \log (2) / 8$ (see (33)). We have now to distinguish the two cases $n \leq n_{0}$ and $n>n_{0}$ to end the proof: we choose the density functions of $X_{0}^{a}, X_{a}, X_{0}^{l}, X^{l}$ to only keep the term depending on n in (37) when $\min \left(n, n_{0}\right)=n$, and to only keep the term depending on n_{0} in the other case.
End of the proof of Inequality (32). Assume $n \leq n_{0}$, such that $\min \left(n, n_{0}\right)=n$. We set $f_{0}^{a}=f^{a}=f_{0}^{l}=\mathbf{1}_{(0 ; 1)}$, and $f^{l}=r_{l}$. These choices guarantee that (X_{0}^{p}, X^{p}) has the relative density r_{p}, for $p=a$ and $p=l$, and, using (37), lead to

$$
\begin{aligned}
K\left(\mathbb{P}_{l}^{\left(n, n_{0}\right)}, \mathbb{P}_{a}^{\left(n, n_{0}\right)}\right) & =n \int_{\mathbb{R}} \log \left(\frac{f^{l}}{f^{a}}(x)\right) f^{l}(x) d x=n \int_{\mathbb{R}} \log \left(r_{l}(x)\right) r_{l}(x) d x \\
& =n \int_{\mathbb{R}} \log \left(1+\chi_{\varepsilon^{(l)}}(x)\right)\left(1+\chi_{\varepsilon^{(l)}}(x)\right) d x
\end{aligned}
$$

Noting that $\log (1+u) \leq u$ for every $u>-1$, and using $\int_{\mathbb{R}} \chi_{\varepsilon^{(l)}}(x) d x=0$, we obtain

$$
K\left(\mathbb{P}_{l}^{\left(n, n_{0}\right)}, \mathbb{P}_{a}^{\left(n, n_{0}\right)}\right) \leq n \int_{\mathbb{R}} \chi_{\varepsilon^{(l)}}^{2}(x) d x \leq n \gamma_{n, n_{0}}^{2}\|\psi\|^{2} 2^{j}
$$

Thus to fulfill (iii) it is sufficient to have

$$
\begin{equation*}
n \gamma_{n, n_{0}}^{2}\|\psi\|^{2} \leq \kappa \frac{\log (2)}{8} \tag{38}
\end{equation*}
$$

Now the parameters $\gamma_{n, n_{0}}$ and 2^{j} are choosen so that the conditions (34), (35), (36) and (38) are satisfied. We set, for two constants $b, c_{0}>0$,

$$
\begin{equation*}
\gamma_{n, n_{0}}=\sqrt{\frac{b}{\min \left(n, n_{0}\right)}} \quad \text { and } \quad 2^{j}=c_{0}\left(\min \left(n, n_{0}\right)\right)^{1 /(2 \alpha+1)} . \tag{39}
\end{equation*}
$$

With the choices $b=\log (2) /\left(128\|\psi\|^{2}\right), c_{0}=\min \left(((L-1) / \sqrt{b})^{2 /(2 \alpha+1)},\left(\|\psi\|_{\infty} / \sqrt{b}\right)^{-2}\right)$, we check that the three conditions are verified for any $B_{0}<b c_{0}\|\psi\|^{2} / 16$, and for $\kappa=1 / 16$. This concludes the proof of Inequality (31).

End of the proof of Inequality (31). Assume $n>n_{0}$. The choice are now $f_{0}^{a}=f^{a}=f^{l}=r_{l}$, and $f_{0}^{l}=\mathbf{1}_{(0 ; 1)}$, which also lead to the relative density r_{p} for (X_{0}^{p}, X^{p}), $p=a$ and $p=l$. Here,

$$
K\left(\mathbb{P}_{l}^{\left(n, n_{0}\right)}, \mathbb{P}_{a}^{\left(n, n_{0}\right)}\right)=n_{0} \int_{\mathbb{R}} \log \left(\frac{f_{0}^{l}}{f_{0}^{a}}(x)\right) f_{0}^{l}(x) d x=n_{0} \int_{\mathbb{R}} \log \left(\frac{1}{r_{l}(x)}\right) d x
$$

We now notice that $\log (1+u) \geq u-u^{2} / 2$, for $u \geq-1 / 2$. We can assume that $\chi_{\varepsilon^{(l)}}(x) \geq-1 / 2$ (even if it means reducing the choice of the constant involved in $\gamma_{n, n_{0}}$, see below), and the same computations as in the case $n \leq n_{0}$ permits to obtain

$$
K\left(\mathbb{P}_{l}^{\left(n, n_{0}\right)}, \mathbb{P}_{a}^{\left(n, n_{0}\right)}\right) \leq n_{0} \gamma_{n, n_{0}}^{2}\|\psi\|^{2} 2^{j}
$$

and the new condition

$$
\begin{equation*}
n_{0} \gamma_{n, n_{0}}^{2}\|\psi\|^{2} \leq \kappa \frac{\log (2)}{8} \tag{40}
\end{equation*}
$$

The parameters (39) are still suitable to guarantee (35), (36) and (40). In this case, the constant b need be small enough so that $\chi_{\varepsilon^{(l)}}(x) \geq-1 / 2$, which is possible. We conclude by checking the three conditions, which leads to Inequality (32), and ends the proof of Theorem 4.

Acknowledgements

We are very grateful to Fabienne Comte for constructive discussions and careful reading of the paper.

References

A. Barron, L. Birgé, and P. Massart. Risk bounds for model selection via penalization. Probab. Theory Related Fields, 113(3):301-413, 1999.
C. Bell and K. Doksum. "Optimal" one-sample distribution-free tests and their two-sample extensions. Ann. Math. Statist., 37:120-132, 1966.
K. Bertin, L. Lacour, and V. Rivoirard. Adaptive estimation of conditional density function. arXiv:1312.7402v1, 2013.
L. Birgé and P. Massart. Minimal penalties for Gaussian model selection. Probab. Theory Related Fields, 138(1-2):33-73, 2007.
C. Butucea and K. Tribouley. Nonparametric homogeneity tests. J. Statist. Plann. Inference, 136(3):597-639, 2006.
G. Chagny. Penalization versus Goldenshluger-Lepski strategies in warped bases regression. ESAIM Probab. Statist., 17:328-358 (electronic), 2013.
K. F. Cheng and C. K. Chu. Semiparametric density estimation under a two-sample density ratio model. Bernoulli, 10(4):583-604, 2004.
G. Claeskens, B.-Y. Jing, L. Peng, and W. Zhou. Empirical likelihood confidence regions for comparison distributions and ROC curves. Canad. J. Statist., 31(2):173-190, 2003.
F. Comte and J. Johannes. Adaptive functional linear regression. Ann. Statist., 40(6):2765-2797, 2012.
J. Ćwik and J. Mielniczuk. Data-dependent bandwidth choice for a grade density kernel estimate. Statist. Probab. Lett., 16(5):397-405, 1993.
R. DeVore and G. Lorentz. Constructive approximation, volume 303 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. SpringerVerlag, Berlin, 1993.
J. Doob. Heuristic approach to the Kolmogorov-Smirnov theorems. The Annals of Mathematical Statistics, 20(3):393-403, 1949.
A. Dvoretzky, J. Kiefer, and J. Wolfowitz. Asymptotic minimax character of the sample distribution function and of the classical multinomial estimator. Ann. Math. Statist., 27:642-669, 1956.
S. Efromovich. Nonparametric curve estimation. Springer Series in Statistics. Springer-Verlag, New York, 1999. Methods, theory, and applications.
J. L. Gastwirth. The first-median test: A two-sided version of the control median test. J. Amer. Statist. Assoc., 63:692-706, 1968.
I. Gijbels and J. Mielniczuk. Asymptotic properties of kernel estimators of the Radon-Nikodým derivative with applications to discriminant analysis. Statist. Sinica, 5(1):261-278, 1995.
A. Goldenshluger and O. Lepski. Bandwidth selection in kernel density estimation: oracle inequalities and adaptive minimax optimality. Ann. Statist., 39(3):1608-1632, 2011.
P. Hall and R. Hyndman. Improved methods for bandwidth selection when estimating ROC curves. Statist. Probab. Lett., 64(2):181-189, 2003.
M. Handcock and P. Janssen. Statistical inference for the relative density. Sociol. Methods Res., 30(3):394-424, 2002.
M. Handcock and M. Morris. Relative distribution methods in the social sciences. Statistics for Social Science and Public Policy. Springer-Verlag, New York, 1999.
W. Härdle, G. Kerkyacharian, D. Picard, and A. Tsybakov. Wavelets, approximation, and statistical applications, volume 129 of Lecture Notes in Statistics. Springer-Verlag, New York, 1998.
R. Hochmuth. Wavelet characterizations for anisotropic Besov spaces. Appl. Comput. Harmon. Anal., 12(2):179-208, 2002.
E. B. Holmgren. The p-p plot as a method for comparing treatment effects. J. Amer. Statist. Assoc., 90:360-365, 1995.
F. Hsieh. The empirical process approach for semiparametric two-sample models with heterogeneous treatment effect. J. Roy. Statist. Soc. Ser. B, 57(4):735-748, 1995.
F. Hsieh and B. Turnbull. Nonparametric methods for evaluating diagnostic tests. Statist. Sinica, 6(1):47-62, 1996a.
F. Hsieh and B. Turnbull. Nonparametric and semiparametric estimation of the receiver operating characteristic curve. Ann. Statist., 24(1):25-40, 1996b.
G. Kerkyacharian and D. Picard. Density estimation in Besov spaces. Statist. Probab. Lett., 13 (1):15-24, 1992.
J.-T. Kim. An order selection criterion for testing goodness of fit. J. Amer. Statist. Assoc., 95 (451):829-835, 2000.
T. Klein and E. Rio. Concentration around the mean for maxima of empirical processes. Ann. Probab., 33(3):1060-1077, 2005.
C. Lacour. Adaptive estimation of the transition density of a particular hidden Markov chain. J. Multivariate Anal., 99(5):787-814, 2008.
G. Li, R. Tiwari, and M. Wells. Quantile comparison functions in two-sample problems, with application to comparisons of diagnostic markers. J. Amer. Statist. Assoc., 91(434):689-698, 1996.
C. Lloyd. Using smoothed ROC curves to summarize and compare diagnostic systems. J. Amer. Statist. Assoc., 93(444):1356-228, 1998.
C. Lloyd and Z. Yong. Kernel estimators of the ROC curve are better than empirical. Statist. Probab. Lett., 44(3):221-228, 1999.
P. Massart. Concentration inequalities and model selection, volume 1896 of Lecture Notes in Mathematics. Springer, Berlin, 2007. Lectures from the 33rd Summer School on Probability Theory held in Saint-Flour, July 6-23, 2003, With a foreword by Jean Picard.
J. Mielniczuk. Grade estimation of Kullback-Leibler information number. Probab. Math. Statist., 13(1):139-147, 1992.
E. Molanes-López and R. Cao. Plug-in bandwidth selector for the kernel relative density estimator. Ann. Inst. Statist. Math., 60(2):273-300, 2008a.
E. Molanes-López and R. Cao. Relative density estimation for left truncated and right censored data. J. Nonparametr. Stat., 20(8):693-720, 2008b.
J.-C. Pardo-Fernández, M.-X. Rodríguez-Álvarez, and I. van Keilegom. A review on ROC curves in the presence of covariates. preprint, 2013. URL http://www.uclouvain.be/cps/ucl/doc/stat/documents/DP2013_50.pdf.
B. Silverman. Density ratios, empirical likelihood and cot death. J. Roy. Statist. Soc. Ser. B, 27 (1):26-33, 1978.
M. Sugiyama, T. Suzuki, and T. Kanamori. Density-ratio matching under the Bregman divergence: a unified framework of density-ratio estimation. Ann. Inst. Statist. Math., 64(5): 1009-1044, 2012.
A. Tsybakov. Introduction to nonparametric estimation. Springer Series in Statistics. Springer, New York, 2009. Revised and extended from the 2004 French original, Translated by Vladimir Zaiats.
M. Yamada, T. Suzuki, T. Kanamori, H. Hachiya, and M. Sugiyama. Relative density-ratio estimation for robust distribution comparison. Neural Comput., 25(5):1324-1370, 2013.

Appendix A. Additional simulation Results

This section is devoted to give additional simulation results, for examples of data which complete the three models given in Section 4. First, Table 3 gives the details of the MISE which are partly plotted in Figure 2, for samples simulated from Example (2) described in Section 4.2. Then, we investigate other examples. The two samples $\left(X_{0, i_{0}}\right)_{i_{0}=1, \ldots, n_{0}}$ and $\left(X_{i}\right)_{i=1, \ldots, n}$ comes from random variables X_{0} and X respectively, with probability distributions described below.
(3) The variable X_{0} is from the Weibull distribution with parameters (2,3). We denote by W the corresponding c.d.f.. The variable X is built such that $X=W^{-1}(S)$, with S chosen from one of the three following distribution:
(a3) a beta distribution $\mathcal{B}(14,17)$,
(b3) a mixture of V_{1} with probability $4 / 5$ and V_{2} with probability $1 / 5$, where V_{1} is from $\mathcal{B}(14,37)$ and V_{2} is from $\mathcal{B}(14,20)$,
(c3) a mixture of V_{1} with probability $1 / 3$ and V_{2} with probability $2 / 3$, where V_{1} is from $\mathcal{B}(34,15)$ and V_{2} is from $\mathcal{B}(15,30)$.
In these three cases, the relative density r to recover is the density of the variable S.
Example (b3) is the one considered to evaluate the influence of n and n_{0} in Section 4.3.
(4) The variable X_{0} is chosen to have a uniform distribution in the set $(0 ; 1)$. The variable X fits one of the following models:
(a4) $(1 / 4)\left(U_{1}+U_{2}+U_{3}+U_{4}\right)$ where $U_{j}, j=1, \ldots, 4$ are independent and uniform on $(0 ; 1)$,
(b4) a mixture of V_{1} with probability $1 / 2$ and V_{2} with probability $1 / 2$, where $V_{1}=V / 2$ and $V_{2}=(V+1) / 2$, and V as for model (a),
(c4) a beta distribution with parameters 4 and 5 (denoted by $\mathcal{B}(4,5)$),

Figure 4. Plot of the differents investigated relative densities of Examples (3) and (4)
(d4) a mixture of $X_{j}, j=1,2,3$ with probability $1 / 3$, where the X_{j} have respective distributions $\mathcal{B}(10,5), \mathcal{B}(7,7)$ and $\mathcal{B}(5,10)$,
(e4) a mixture of X_{1} with probability $1 / 2$ and X_{2} with probability $1 / 2$, where X_{1} and X_{2} have respective distributions $\mathcal{B}(15,4)$ and $\mathcal{B}(5,11)$.
Hence the investigated relative densities are defined as the densities of X, in these five examples.
The third set of examples is borrowed from Molanes-López and Cao (2008a) and the fourth from Ćwik and Mielniczuk (1993). The true relative densities associated to each framework of these two sets are plotted in Figure 4: they are quite far from the uniform distribution, since the distributions of X and X_{0} are not similar.

Figure 5 illustrates the stability of the method and shows beams of estimates $\hat{r}_{\tilde{m}}$: 10 estimators built from i.i.d. samples of data are plotted together with the true functions. The MISE are displayed in Table 4. Notice that the values we find are of the same order as the ones of Ćwik and Mielniczuk (1993) and of Molanes-López and Cao (2008a).

Figure 5. Beams of 10 estimators built from i.i.d. samples of size $n=n_{0}=500$ (thin lines) versus true function (thick line) in Examples (3) and (4).

Example (a2)

	50	100	200	400		50	100	200	400
50	0.0022	0.0021	0.0027	0.0023	50	0.0038	0.0040	0.0061	0.0100
100	0.0026	0.0026	0.0023	0.0016	100	0.0053	0.0062	0.0053	0.0036
200	0.0021	0.0024	0.0017	0.0021	200	0.0025	0.0054	0.0039	0.0037
400	0.0021	0.0020	0.0016	0.0004	400	0.0028	0.0041	0.0041	0.0036
$c=1.01$					$c=1.05$				

$\cdots>{ }^{-}$	50	100	200	400		50	100	200	400
50	0.0109	0.0159	0.0166	0.0151	50	0.2406	0.2086	0.1779	0.1491
100	0.0121	0.0138	0.0125	0.0151	100	0.2202	0.1573	0.1112	0.0971
200	0.0125	0.0129	0.0130	0.0127	200	0.2030	0.1203	0.0829	0.0712
400	0.0121	0.0129	0.0120	0.0117	400	0.2013	0.1090	0.0744	0.0657

Example (b2)

$n \times$	50	100	200	400		50	100	200	400
50	0.0041	0.0080	0.0052	0.0042	50	0.0131	0.008	0.0058	0.0092
100	0.0032	0.0049	0.0018	0.0015	100	0.0067	0.0093	0.0056	0.0056
200	0.0048	0.0036	0.0018	0.0014	200	0.0059	0.0071	0.0034	0.0041
400	0.0033	0.0012	0.0012	0.0014	400	0.0067	0.0042	0.0051	0.0035

TABLE 3. Values of MISE averaged over 500 samples for the estimator $\hat{r}_{\tilde{m}}$, in Examples (2) (a2) and (b2).

	50	100	200	400		50	100	200	400
50	0.9094	0.6008	0.3727	0.2642	50	1.2313	0.8564	0.5358	0.4151
100	0.8884	0.5738	0.2896	0.2108	100	1.1737	0.7826	0.4892	0.3613
200	0.8875	0.4877	0.2837	0.1878	200	1.0919	0.7586	0.4379	0.2876
400	0.9225	0.4848	0.2860	0.1817	400	1.1359	0.7180	0.4486	0.2823
Example (a3)					Example (b3)				

	n_{0}	50	100	200
400				
50	0.9589	0.6272	0.4593	0.3251
100	0.8717	0.5665	0.3287	0.2035
200	0.7746	0.5055	0.2848	0.1625
400	0.7908	0.4752	0.2555	0.1501

Example (c3)

	n_{0}	50	100	200
400				
50	0.7616	0.3514	0.2053	0.1470
100	0.6133	0.2649	0.1637	0.1295
200	0.5324	0.2739	0.1539	0.1138
400	0.4977	0.2445	0.1567	0.1080

Example (b4)

	n_{0}	50	100	200
400				
50	0.2860	0.1475	0.0820	0.0625
100	0.2009	0.0901	0.0584	0.0454
200	0.1699	0.0761	0.0496	0.0358
400	0.1465	0.0759	0.0446	0.0330

	n_{0}	50	100	200
4				
50	0.2379	0.1503	0.1094	0.0935
100	0.2303	0.1453	0.0955	0.0752
200	0.2298	0.1409	0.1032	0.0685
400	0.1903	0.1372	0.0944	0.0634
Example (a4)				

	n_{0}	50	100	200
400				
50	0.1989	0.1082	0.0661	0.0573
100	0.1684	0.0920	0.0643	0.0456
200	0.1581	0.0950	0.0572	0.0417
400	0.1541	0.0893	0.0586	0.0381

Example (c4)

	n_{0}	50	100	200
400				
50	0.4559	0.3911	0.2976	0.2287
100	0.4432	0.2884	0.1521	0.0899
200	0.4267	0.2026	0.1005	0.0751
400	0.4129	0.1731	0.0955	0.0660

Example (e4)

TABLE 4. Values of MISE averaged over 500 samples for the estimator $\hat{r}_{\tilde{m}}$, in Examples (3) and (4).

[^0]: Date: March 4, 2014.
 (A) LMRS, UMR CNRS 6085, Université de Rouen, France. gaelle.chagny@gmail.com
 (B) Laboratoire de Mathématiques d'Orsay, Université Paris-Sud, France. claire.lacour@u-psud.fr.

