Optimal adaptive estimation of the relative density
Résumé
This paper deals with the classical statistical problem of comparing the probability distributions of two real random variables $X$ and $X_0$, from a double independent sample. While most of the usual tools are based on the cumulative distribution function $F$ and $F_0$ of the variables, we focus on the relative density, a function recently used in two-sample problems, and defined as the density of the variable $F_0(X)$. We provide a nonparametric adaptive strategy to estimate the target function. We first define a collection of estimates using a projection on the trigonometric basis and a preliminar estimator of $F_0$.
An estimator is selected among this collection of projection estimates, with a criterion in the spirit of the Goldenshluger-Lepski methodology. We show the optimality of the procedure both in the oracle and the minimax sense: the convergence rate for the risk computed from an oracle inequality matches with the lower bound, that we also derived. Finally, some simulations illustrate the method.
Fichier principal
RDArticleV2Hal.pdf (355.65 Ko)
Télécharger le fichier
RDSuppMatHal.pdf (306.69 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...