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OPTIMAL ADAPTIVE ESTIMATION OF THE RELATIVE DENSITY

GAËLLE CHAGNY(A) AND CLAIRE LACOUR(B)

Abstract. This paper deals with the classical statistical problem of comparing the probability
distributions of two real random variables X and X0, from a double independent sample. While
most of the usual tools are based on the cumulative distribution function F and F0 of the
variables, we focus on the relative density, a function recently used in two-sample problems, and
defined as the density of the variable F0(X). We provide a nonparametric adaptive strategy
to estimate the target function. We first define a collection of estimates using a projection
on the trigonometric basis and a preliminar estimator of F0. An estimator is selected among
this collection of projection estimates, with a criterion in the spirit of the Goldenshluger-Lepski
methodology. We show the optimality of the procedure both in the oracle and the minimax
sense: the convergence rate for the risk computed from an oracle inequality matches with the
lower bound, that we also derived. Finally, some simulations illustrate the method.

Keywords: Nonparametric estimation, model selection, relative density, two-sample problem.

AMS Subject Classification 2010: 62G05; 62G07; 62G30.

1. Introduction

1.1. Statistical model. The study of differences among groups is the main challenge of two-
sample problems, and statistical methods are required to do this in various fields (biology or social
research for example). Nonparametric inference procedures are well-developed for comparing
samples coming from two populations, modeled by two real random variables X0 and X. Most
of the methods are based on the comparison of the cumulative distribution functions (c.d.f. in
the sequel) F0 and F of X0 and X respectively. The study of the relative density r of X with
respect to X0 is quite recent. Assume that f0, the density of X0, is defined on an interval A0

and does not vanish on it. Denote by F−1
0 the inverse of F0. The relative density is defined as

the density of the variable F0(X) and can be expressed as

(1) r(x) =
f ◦ F−1

0 (x)

f0 ◦ F−1
0 (x)

, x ∈ F0(A),

where ◦ is the composition symbol, f is a density of X, defined on an interval A ⊂ R. In the
present work, we focus on the optimal adaptive estimation of this function (in the oracle and
minimax senses), from two independent samples (Xi)i∈{1,...,n} and (X0,i0)i0∈{1,...,n0} of variables
X and X0.

1.2. Motivation. The most classical nonparametric methods to tackle the initial issue of the
comparison of F and F0 are statistical tests such as Kolmogorov and Smirnov (Kolmogorov, 1933,
1941; Smirnov, 1939, 1944), Wilcoxon (Wilcoxon, 1945), or Mann and Whitney tests (Mann and
Whitney, 1947), which all propose to check the null hypothesis of equal c.d.f.. We refer to Gibbons
and Chakraborti (2011) for a detailed review of these tests. Probability plotting tools such as
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quantile-quantile plots, whose functional form is x 7→ F−1
0 (F (x)), are also commonly considered.

However, the representation of the quantiles of one distribution versus the quantiles of the other
may be questionable. For example, Holmgren (1995) showed that it does not enable scale-
invariant comparisons of treatment effects and that it depends on outliers. Some authors have
thus been interested by an alternative, the probability-probability plot, a graph of the percentiles
of one distribution versus the percentiles of the other (see among all Li et al. 1996). The functional
form can be written x 7→ F (F−1

0 (x)), which defines the relative c.d.f., a function closely related
to the Receiver Operating Characteristic (ROC) curve: the latter is x 7→ 1 − F (F−1

0 (1 − x)).
This curve is well-known in fields such as signal detection and diagnostic test for example. Both
the relative c.d.f. and the ROC curve are based on the following transformation of the data: to
compare X to X0, consider F0(X), a variable known in the literature as the grade transformation
or most commonly as the relative transformation. Its c.d.f. is the relative c.d.f. defined above.
The basic idea is to look at the rank that a comparison value (that is a value of X) would have in
the reference group (that is in the values of the sample of X0). To recover from a double-sample
the ROC curve or the relative c.d.f. in a nonparametric way, two types of strategies have mainly
been studied: estimators based on the empirical c.d.f. of X and X0 (see Hsieh and Turnbull
1996a,b and references therein), as well as kernel smoothers (see among all Lloyd 1998; Lloyd and
Yong 1999; Hall and Hyndman 2003 for the ROC curve, Gastwirth 1968; Hsieh 1995; Handcock
and Morris 1999 for the relative c.d.f.). Conditional version of the previous strategies have also
been studied (see the review provided by Pardo-Fernández et al. 2013). These two functions are
based on the c.d.f. F and F0 of the two variables to compare.

Nevertheless, focusing on their densities is likely to provide more precised and visual details.
That is why the present work addresses the problem of comparison through the estimation of the
relative density (1), which is the derivative of the relative c.d.f., and thus a density of the variable
F0(X). Graphically more informative than the ROC curve (see the introduction of Molanes-
López and Cao 2008b), another reason for the choice of the relative density is that an estimate of
this function is required to study the asymptotic variance of any ROC curve estimator, and thus
to build confidence regions based on it (see the references above, and also Claeskens et al. 2003).
Moreover, some summary measures for the comparison of X and X0 are based on the relative
density r: the most classical example is the Kullback-Leibler divergence (Kullback and Leibler,
1951) which can be recovered by the plug-in of an estimate of r (Mielniczuk, 1992; Handcock
and Morris, 1999). But there exist other measures that can pertain to the relative density, such
as the Gini separation measurement and some discriminant rules (Gijbels and Mielniczuk, 1995),
Lorenz curves and the median polarization index (Handcock and Morris, 1999). It is also possible
to build goodness-of-fit tests from the relative density, see Kim (2000).

However, not many investigations are concerned with theoretical results for the estimation of
the relative density, and most of the references are sociological ones. A clear account is provided
by Handcock and Janssen (2002). Early mathematical references for the relative density are
Bell and Doksum (1966) and Silverman (1978), who approached the problem with the maximum
likelihood point of view. A kernel estimate was first proposed by Ćwik and Mielniczuk (1993), and
modified by Molanes-López and Cao (2008a) who proved asymptotic developments for the Mean
Integrated Squared Error (MISE), under the assumption that r is twice continuously derivable.
The problem of bandwidth selection is also addressed, but few theoretical results are proved for
the estimators with the selected parameters, to the best of our knowledge. The question has also
been studied in a semiparametric setting (see Cheng and Chu 2004 and references therein). If
the relative density can also be brought closer to the density-ratio, for which numerous studies
are available (see Sugiyama et al. 2012 for a review), some authors have noticed that the relative
distribution leads to smoother and more stable results (Yamada et al., 2013). Our work is the
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first to study a nonparametric projection method in this setting, and provide a detailed optimal
study of an adaptive estimator.

1.3. Contribution and overview. Our main contribution is a theoretical one. The novelty
of our work is to provide a theoretically-justified adaptive estimator with optimal rate of con-
vergence. A collection of projection estimators on linear models is built in Section 2, and the
quadratic risk is studied: the upper-bound is non-trivial, and requires non-straightforward split-
tings. We obtain a bias-variance decomposition which permits to understand what we can expect
at best from adaptive estimation, which is the subject of Section 3: the model selection is au-
tomatically performed in the spirit of the Goldenshluger-Lepski method in a data-driven way
(Goldenshluger and Lepski, 2011). The resulting estimator is shown to be optimal in the col-
lection, but also, from an asymptotic point of view, among all possible estimators for a large
class of regular relative density. To be more precise, an oracle-type inequality first proves that
adaptation has no cost (Section 3.2): the estimator achieves the same performance as the one
which would have been selected if the regularity index of the target function has been known.
The choice of the quadratic risk permits to use the Hilbert structure and thus the standard
model selection tools (mainly concentration inequalities) even if our selection criterion is based
on the Goldenshluger-Lepski methodology. Rates of convergence are deduced, for functions r
belonging to Besov balls: we obtain the nonparametric rate (n−1 + n−1

0 )2α/(2α+1), where α is
the smoothness index of r. These rates are also shown to be optimal: a lower bound for the
minimax risk is established (Section 3.3). Such results are new for this estimation problem.
Especially, no assumption about a link between the sample sizes n and n0 is required, and the
regularity assumptions are not restrictive. Section 4 provides a brief discussion of some practical
issues via simulations. Finally, the proofs are gathered in Section 5. The supplementary material
Chagny and Lacour (2014) is available with further simulation results (reconstructions and risk
computations), as well as further details about technical definitions and proofs.

2. The collection of projection estimators

For the sake of clarity, we assume that the variables X and X0 have the same support:
A = A0. Hence, F0(A) = (0; 1) is the estimation interval. This assumption is natural to compare
the distribution of X to the one of X0.

2.1. Approximation spaces. We denote by L2((0; 1)), the space of square integrable functions
on (0; 1), equipped with its usual Hilbert structure: 〈., .〉 is the scalar product, and ‖.‖ the
associated norm. The relative density r, defined by (1) and estimated on its definition set (0; 1)
is assumed to belong to L2((0; 1)). Our estimation method is based on this device: we consider
a family Sm, m ∈ M of finite dimensional subspaces of L2((0; 1)) and compute a collection
of estimators (r̂m)m∈M, where, for all m, r̂m belongs to Sm. In a second step a data driven
procedure chooses among the collection the final estimator r̂m̂.

Here, simple projection trigonometric spaces are considered: the set Sm is linearly spanned by
ϕ1, . . . , ϕ2m+1, with

ϕ1(x) = 1, ϕ2j(x) =
√
2 cos(2πjx), ϕ2j+1(x) =

√
2 sin(2πjx), x ∈ (0; 1).

We set Dm = 2m + 1, the dimension of Sm, and M = {1, 2, . . . , ⌊min(n, n0)/2⌋ − 1}, the
collection of indices, whose cardinality depends on the two sample-sizes. The largest space in
the collection has maximal dimension Dmmax , which is subject to constraints appearing later.
We focus on the trigonometric basis mainly for its simplicity to be handled. It is also used for
a lot of other nonparametric estimation problems, by several authors (see e.g. Efromovich 1999
among all). Moreover, the presence of a constant function (namely ϕ1) in the basis is perfectly
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well-adapted to the relative density estimation context, see Section 4.2 below. The method may
however probably be extended to other projection spaces, thanks to different "tricks" in the
computations.

2.2. Estimation on a fixed model. For each index m ∈ M, we define an estimator for the
orthogonal projection rm =

∑Dm
j=1 ajϕj of r onto the model Sm, where aj = 〈ϕj , r〉. First notice

that

(2) E [ϕj(F0(X))] =

∫

A
ϕj ◦ F0(x)f(x)dx =

∫

F0(A)
ϕj(u)

f ◦ F−1
0 (u)

f0 ◦ F−1
0 (u)

du = 〈ϕj , r〉 = aj ,

with the change of variables u = F0(x), and keeping in mind that F0(A) = (0; 1). Thus, the
following function suits well to estimate rm:

(3) r̂m(x) =

Dm∑

j=1

âjϕj(x), with âj =
1

n

n∑

i=1

ϕj

(
F̂0(Xi)

)
,

and where F̂0 is the empirical c.d.f. of the sample (X0,i0)i0=1,...,n0 , that is

F̂0 : x 7→ 1

n0

n0∑

i0=1

1X0,i0
≤x.

Note that in the “toy” case of known c.d.f. F0, the procedure amounts to estimate a density : r̂m
is the classical density projection estimator (adapted to the estimation of the density of F0(X)).

Remark 1. Comparison with other estimation methods.

(1) The estimator r̂m defined in (3) can also be seen as a minimum of contrast estimate:
r̂m = arg inft∈Sm γn(t, F̂0), m ∈ M, with

γn(t, F̂0) = ‖t‖2 − 2

n

n∑

i=1

t ◦ F̂0(Xi).

(2) It is worthwhile to draw a parallel between the projection method and the kernel estima-
tor of Ćwik and Mielniczuk (1993) or Molanes-López and Cao (2008a). Thanks to the
properties of the sine-cosine basis,

r̂m(x) =
2

n

n∑

i=1

(Dm−1)/2∑

j=0

cos
(
2πj

(
F̂0(Xi)− x

))
.

Heuristically, by setting (Dm − 1)/2 = ⌊1/(2πh)⌋ − 1, h > 0, the previous expression
shows that r̂m can be seen as an approximation of

r̃h(x) =
2

n

n∑

i=1

∫ 1/(2πh)

0
cos
(
2πu

(
F̂0(Xi)− x

))
du,

=
1

2πn

n∑

i=1

∫ 1/h

−1/h
cos
(
u
(
F̂0(Xi)− x

))
du,

=
1

2πn

n∑

i=1

∫ 1/h

−1/h
exp

(
−iu

(
x− F̂0(Xi)

))
du =

1

n

n∑

i=1

1

h
K

(
x− F̂0(Xi)

h

)
,

with K the sinus cardinal kernel defined by its Fourier transform: F(K)(x) = 1 if
x ∈ (0; 1), F(K)(x) = 0 otherwise. Our strategy thus seems to be close to the kernel
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estimators of Ćwik and Mielniczuk (1993) and Molanes-López and Cao (2008a). But
contrary to them, the projection method makes possible to obtain an unbiased estimate
when the target function belongs to one of the approximation spaces. In the relative
density estimation setting, this can occur if the two variables X and X0 have the same
distribution, and if the constant functions are included in one of the models, which is the
case.

2.3. Risk of a projection estimator. The global squared error is the natural criterion associ-
ated to the projection estimation procedure. First consider the toy case of known c.d.f. F0. The
Pythagoras theorem simply leads to the classical bias-variance decomposition:

(4) ‖r − r̂m‖2 = ‖r − rm‖2 + ‖r̂m − rm‖2 .

Moreover, the variance term can be easily bounded, still with known F0, and using the property
of the trigonometric basis:

(5) E

[
‖r̂m − rm‖2

]
=

Dm∑

j=1

Var (âj) ≤
1

n

Dm∑

j=1

E
[
ϕ2
j (F0(X1))

]
=
Dm

n
.

The challenge in the general case comes from the plug-in of the empirical F̂0. It seems natural but
involves non straightforward computations. This is why the proof of the following upper-bound
for the risk is postponed to Section 5.

Proposition 1. Assume that the relative density r is continuously differentiable on (0; 1). As-

sume also that Dm ≤ κn
1/3
0 , for a constant κ > 0. Then, there exist two constants c1 and c2

such that,

E

[
‖r̂m − r‖2

]
≤ 3 ‖r − rm‖2 +

(
3
Dm

n
+ c1‖r‖2

Dm

n0

)
+ c2

(
1

n
+

1

n0

)
.(6)

The constants c1 and c2 do not depend on n, n0 and m. Moreover, c1 also does not depend on r.

The assumption on the model dimension Dm comes from the control of the deviations between
F̂0 and F0. Proposition 1 shows that the risk is divided into three terms: a squared-bias term, a
variance term (proportional to Dm(n−1 + n−1

0 )) and a remainder (proportional to (n−1 + n−1
0 )).

The upper bound of (1) is non trivial, and the proof requires tricky approximations (see Section
5.2 e.g.).

2.4. Rates of convergence on Besov balls. The result (6) also gives the asymptotic rate for
an estimator if we consider that r has smoothness α > 0. Indeed, in this case, it is possible to
calculate the approximation error ‖r − rm‖. A space of functions with smoothness α which has
good approximation properties is the Besov space Bα

2,∞, where index 2 refers to the L2 norm.
This space is somehow a generalization of the Sobolev space and is known to be optimal for
nonparametric estimation (Kerkyacharian and Picard, 1993). More precisely, we assume that
the relative density r belongs to a Besov ball Bα

2,∞((0; 1), L) of radius L, for the Besov norm
‖.‖α,2 on the Besov space Bα

2,∞((0; 1)). A precise definition is recalled in the supplementary
material (Section 1 of Chagny and Lacour 2014), see also DeVore and Lorentz (1993). The
following rate is then obtained.

Corollary 1. Assume that the relative density r belongs to the Besov ball Bα
2,∞((0; 1), L), for

L > 0, and α ≥ 1. Choose a model mn,n0 such that Dmn,n0
= C(n−1+n−1

0 )−1/(2α+1), for C > 0.
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Then, under the assumptions of Proposition 1, there exists a numerical constant C ′ such that

E

[∥∥r̂mn,n0
− r
∥∥2
]
≤ C ′

(
1

n
+

1

n0

) 2α
2α+1

.

This inequality is a straightforward consequence of the result of DeVore and Lorentz (1993) and
of Lemma 12 of Barron et al. (1999), which imply that the bias term ‖r − rm‖2 is of order
D−2α

m . The minimum of the right-hand side term of (6) can thus be computed, leading to
Corollary 1. Nevertheless, it is worth noticing that the rate depends on the two sample sizes n
and n0. Heuristically, it is (min(n, n0))

−2α/(2α+1). The rate we obtain is new in nonparametric
estimation, but it is not surprising. Actually, it looks like the Kolmogorov-Smirnov two-sample
test convergence result: it is well-known that the test statistic rate is

√
nn0/(n+ n0) (see for

example Doob 1949). More recently, similar rates have been obtained in adaptive minimax
testing (see e.g. Butucea and Tribouley 2006).

Remark 2. The regularity condition α ≥ 1 ensures that there exists a dimension Dmn,n0
which

satisfies Dm ≤ Cn
1/3
0 while being of order (n−1 + n−1

0 )−1/(2α+1). When α < 1, this choice
remains possible and the convergence rate is preserved under the additional assumption n ≤
n0/(n

(2−2α)/3
0 − 1). Roughly, this condition means that n ≤ n

(2α+1)/3
0 < n0, and thus n and n0

must be put in order to handle this case.

It follows from Corollary 1 that the optimal dimension depends on the unknown regularity α
of the function to be estimated. The aim is to perform an adaptive selection only based on the
data.

3. Adaptive optimal estimation

3.1. Model selection. Consider the collection (Sm)m∈M of models defined in Section 2.1 and
the collection (r̂m)m∈M of estimators defined by (3). The aim is to propose a data driven
choice of m leading to an estimator with risk near of the squared-bias/variance compromise
(see (6)). The selection combines two strategies: the model selection device performed with a
penalization of the contrast (see e.g. Barron et al. 1999), and the recent Goldenshluger-Lepski
method (Goldenshluger and Lepski, 2011). A similar device has already been used in Comte and
Johannes (2012), Bertin et al. (2013) and Chagny (2013). We set, for every index m,

(7)
V (m) = c0

(
Dm

n
+ ‖r‖2Dm

n0

)
,

A(m) = max
m′∈M

(
‖r̂m′ − r̂m∧m′‖2 − V (m′)

)
+
,

where m ∧m′ is the minimum between m and m′, (x)+ the maximum between x and 0 (for a
real number x), and c0 a tuning parameter. The quantity V must be understood as a penalty
term, and A is an approximation of the squared-bias term (see Lemma 10). The estimator of r
is now given by r̂m̂, with

m̂ = argminm∈M{A(m) + V (m)}.
By construction, the choice of the index m, and hence the estimator r̂m̂ does not depend on the
regularity assumption on the relative density r.

3.2. Optimality in the oracle sense. A non-asymptotic upper-bound is derived for the risk
of the estimator r̂m̂.
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Theorem 2. Assume that the relative density r is continuously differentiable on (0; 1). Assume

also that Dm ≤ κn
1/3
0 / ln2/3(n0), for a constant κ > 0. Then, there exist two constants c and C

such that

E

[
‖r̂m̂ − r‖2

]
≤ c min

m∈M

{(
Dm

n
+ ‖r‖2Dm

n0

)
+ ‖rm − r‖2

}
+ C

(
1

n
+

1

n0

)
.(8)

The constant c is purely numerical, while C depends on r, but neither on n nor n0.

Theorem 2 establishes the optimality of the selection rule in the oracle sense. For every index
m ∈ M, {(Dm/n+‖r‖2Dm/n0)+‖rm−r‖2} has the same order as E

[
‖r̂m − r‖2

]
(see Proposition

1). Thus, Inequality (8) indicates that up to a multiplicative constant, the estimator r̂m̂ converges
as fast as the best estimator in the collection. The proof of such result is based on the following
scheme: we first come down to the case of a known c.d.f. F0, by using deviation results for the
empirical c.d.f. Then, we use concentration results for empirical processes to prove that A(m)
defined in (7) is a good estimate of the bias term.

The following corollary states the convergence rate of the risk over Besov balls. Since the
regularity parameter defining the functional class is not supposed to be known to select the
estimator r̂m̂, it is an adaptation result: the estimator adapts to the unknown regularity α of
the function r.

Corollary 2. Assume that the relative density r belongs to Bα
2,∞((0; 1), L), for L > 0, and α ≥ 1.

Under the assumptions of Theorem 2,

E

[
‖r̂m̂ − r‖2

]
≤ C

(
1

n
+

1

n0

) 2α
2α+1

.

It is worth noticing that the rate of convergence computed above (that is the one of the best
estimator among the collection, see Corollary 1), is automatically achieved by the estimator r̂m̂.
Corollary 2 is established with regularity assumptions stated on the target function r only. To
the best of our knowledge, in the previous works, convergence results for selected relative density
estimators (among a family of kernel ones) depended on strong assumptions on r (r ∈ C6((0; 1))
e.g.) but also on the regularity of f0.

The penalty term V given in (7) cannot be used in practice, since it depends on the unknown
quantity ‖r‖2. A solution is to replace it by an estimator, and to prove that the estimator of
r built with this random penalty keeps the adaptation property. To that aim, set, for an index
m∗ ∈ M,

(9)
Ṽ (m) = c0

(
Dm

n
+ 4‖r̂m∗‖2Dm

n0

)
,

Ã(m) = max
m′∈M

(
‖r̂m′ − r̂m∧m′‖2 − Ṽ (m′)

)
+
,

and m̃ = argminm∈M{Ã(m) + Ṽ (m)}. The result for r̂m̃ is described in the following theorem.

Theorem 3. Assume that the assumptions of Theorem 2 are satisfied, and that r belongs to

Bα
2,∞((0; 1), L), for L > 0, and α ≥ 1. Choose m∗ in the definition of Ṽ such that Dm∗ ≥ ln(n0)

and Dm∗ = O(n1/4/ ln1/4(n)). Then, for n0 large enough, there exist two constants c and C such
that,

E

[
‖r̂m̃ − r‖2

]
≤ c min

m∈M

{(
Dm

n
+ ‖r‖2Dm

n0

)
+ ‖rm − r‖2

}
+ C

(
1

n
+

1

n0

)
.
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As for Theorem 2, the result proves that the selection rule leads to the best trade-off between
a bias and a variance term. Our estimation procedure is thus optimal in the oracle sense. The
convergence rates derived in Corollary 2 remain valid for r̂m̃. Now, the only remaining parameter
to tune is the constant c0 involved in the definition of Ṽ . A value is obtained in the proof, but it
is quite rough and useless in practice. A sharp bound seems difficult to obtain from a theoretical
point of view: obtaining minimal penalties is still a difficult problem (see e.g. Birgé and Massart
2007), and this question could be the subject of a full paper. Therefore, we experiment the
tuning by a simulation study over various models.

3.3. Optimality in the minimax sense. Until now, we have drawn conclusions about the
performance of the selected estimators r̂m̂ or r̂m̃ within the collection (r̂m)m∈M of projection
estimators. A natural question follows: is the convergence rate obtained in Corollary 2 optimal
among all the possible estimation strategies? We prove that the answer is yes by establishing the
following lower bound for the minimax risk of the relative density estimation problem, without
making any assumption.

Theorem 4. Let Fα be the set of relative density functions on (0; 1) which belong to the Besov
ball Bα

2,∞((0; 1), L), for a fixed radius L > 1, and for α ≥ 1. Then there exists a constant c > 0

which depends on (α,L) such that

(10) inf
r̂n,n0

sup
r∈Fα

E

[
‖r̂n,n0 − r‖2

]
≥ c

(
1

n
+

1

n0

)2α/(2α+1)

,

where the infimum is taken over all possible estimators r̂n,n0 obtained with the two data samples
(Xi)i∈{1,...,n} and (X0,i0)i0∈{1,...,n0}.

The optimal convergence rate is thus (n−1 + n−1
0 )2α/(2α+1). The upper-bound of Corollary 2

and the lower bound (10) match, up to constants. This proves that our estimation procedure
achieves the minimax rate and is thus also optimal in the minimax sense. The result is not
straightforward: the proof requires specific constructions, since it captures the influence of both
sample sizes, n and n0. Although it is a lower bound for a kind of density function, we think it
can not be easily deduced from the minimax rate of density estimation over Besov ball (see for
example Kerkyacharian and Picard 1992), since the two samples do not have symmetric roles.

4. Simulation

In this section, we present the performance of the adaptive estimator r̂m̃ on simulated data.
We have carried out an intensive simulation study (with the computing environment MATLAB)
which shows that the results are equivalent to the ones of Ćwik and Mielniczuk (1993) and
Molanes-López and Cao (2008a). Here, we thus prefer to discuss two types of questions, to eval-
uate the specific robustness of our method. After describing the way we compute the estimator,
we first focus on the quality of estimation when the variable X is close (in distribution) to X0.
Second, we investigate the role of the two sample sizes, n and n0. For additional reconstruc-
tions, risk computations and details about calibration, the reader may refer to the supplementary
material (Chagny and Lacour, 2014, Section 2).

4.1. Implementation. The implementation of the estimator is very simple, and follows the
steps below.

• For each m ∈ M, compute (r̂m(xk))k=1,...,K defined by (3) for grid points (xk)k=1,...,K

evenly distributed across (0; 1), with K = 50.
• For each m ∈ M, compute Ṽ (m) and Ã(m), defined by (9).
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– For Ṽ (h). We choose c0 = 1, but the estimation results seem quite robust to
slight changes. This value has been obtained by a numerical calibration on various
examples (see Section 2.2 of the supplementary material Chagny and Lacour 2014
for more details). The index m∗ of the estimator r̂m∗ used in Ṽ is the smallest
integer greater than ln(n0)− 1.

– For Ã(h). We approximate the L2 norms by the corresponding Riemann sums
computed over the grid points (xk)k:

‖r̂m′ − r̂m∧m′‖2 ≈ 1

K

K∑

k=1

(r̂m′(xk)− r̂m∧m′(xk))
2 .

• Select the argmin m̃ of Ã(m) + Ṽ (m), and choose r̂m̃.

The risks E[‖(r̂m̃)+ − r‖2] are also computed: it is not difficult to see that the choice of the
positive part of the estimator can only make its risk decreases. To compute the expectation, we
average the integrated squared error (ISE) computed with N = 500 replications of the samples
(X0,i0)i0 and (Xi)i. Notice that the grid size (K = 50), and the number of replications (N = 500)
are the same as Ćwik and Mielniczuk (1993).

4.2. Experiment 1 - Two samples with close distributions. The trigonometric basis suits
well to recover relative densities. Indeed, the first function of the basis is ϕ1 : x ∈ (0; 1) 7→ 1, and
thus the first estimated coefficient â1 in (3) also equals 1. But we know that the relative density
is constant equal to 1 over (0; 1) when X and X0 have the same distribution. Consequently,
our procedure permits to obtain an exact estimation in this case, provided that the data driven
criterion leads to the choice of the first model in the collection. We hope to select Dm̂ = 1, that
is m̂ = 0. In this section, we check that the estimation procedure actually easily handles this
case.

First, we generate two samples (X0,i0)i0=1,...,n0 and (Xi)i=1,...,n coming from random variables
X0 and X respectively, with one of the following common probability distributions (Example (1)
in the sequel): (a1) a uniform distribution in the set (0; 1), (b1) a beta distribution B(2, 5), (c1)
a Gaussian distribution with mean 0 and variance 1, (d1) an exponential distribution with mean
5. As explained, the estimator is expected to be constant equal to 1: the selected index m must
thus be 0. This is the case for most of the samples we simulate: for example, only 1% of the 500
estimators computed with 50 i.i.d. Gaussian pairs (X,X0) are not identically equal to 1. The
medians of the ISE over 500 replicated samples are always equal to 0, whatever the distribution
of X and X0, chosen among the examples (uniform, beta, Gaussian, or exponential). The MISE
are dispayed in Table 1, for different possible sample sizes. We can also check that they are much
more smaller than the MISE obtained with two different distributions for X and X0 (see Table
2 in the supplementary material, Chagny and Lacour 2014, Section 2.2).

Then, we investigate what happens when X is close to X0 but slightly different, with samples
simulated from the set of Example (2).

(a2) The variable X0 is from the uniform distribution on (0; 1), and the variable X has the
density f(x) = c1(0;0.5)(x) + (2− c)1(0.5;1)(x), with c ∈ {1.01, 1.05, 1.1, 1.3, 1.5} (the case
c = 1 is the case of the uniform distribution on (0; 1)).

(b2) The variable X0 is from the beta distribution B(2, 5), and the variable X from a beta
distribution B(a, 5) with a ∈ {2.01, 2.05, 2.1, 2.3, 2.5}. For this example, the risks are
computed over a regular grid of the interval [F0(0.01);F0(0.99)].

Figure 1 shows the true relative densities for these two examples.
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n\n0 50 100 200 400
50 0.213 0.206 0.156 0.185
100 0.114 0.159 0.115 0.096
200 0.125 0.109 0.058 0.056
400 0.089 0.078 0.054 0.036

Example (a1)

n\n0 50 100 200 400
50 0.180 0.163 0.165 0.157
100 0.140 0.153 0.105 0.105
200 0.110 0.095 0.075 0.069
400 0.099 0.076 0.047 0.035

Example (b1)

n\n0 50 100 200 400
50 0.245 0.162 0.202 0.119
100 0.125 0.131 0.110 0.099
200 0.141 0.103 0.077 0.055
400 0.132 0.086 0.051 0.039

Example (c1)

n\n0 50 100 200 400
50 0.177 0.186 0.147 0.165
100 0.117 0.119 0.092 0.094
200 0.095 0.099 0.081 0.073
400 0.084 0.105 0.056 0.041

Example (d1)

Table 1. Values of MISE ×10 averaged over 500 samples for the estimator r̂m̃, in

Example (1) ((a1) to (d1)).

Example (a2) Example (b2)
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Figure 1. Plot of the different investigated relative densities of Examples (2),
(a2) and (b2).

The MISEs in Examples (2) (a2) and (b2) are plotted in Figure 2 with respect to the sample
sizes n = n0. Details are also given in Table 1 of the supplementary material (Chagny and
Lacour, 2014, Section 2.2). The larger c (resp. a), the further X from X0 the larger the MISE.
The results are thus better especially when the two variable distributions are close.

4.3. Experiment 2 - Influence of the two sample sizes. We now study the influence of
the two sample sizes. Recall that the theoretical results we obtain do not require any link
between n and n0. On the contrary, they are often supposed to be proportional in the literature.
But we obtain a convergence rate in which n and n0 play symmetric roles (see Corollary 2).
What happens in practice? To briefly discuss this question, let us consider the observations
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Example (a2) Example (b2)
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Figure 2. Values of MISE (averaged over 500 samples) for the estimator r̂m̃
with respect to the sample sizes n = n0 in Examples (2) (a2) and (b2).

of (Xi)i∈{1,...,n} and (X0,i0)i0∈{1,...,n0} fitting the following model (Example (3)). The variable
X0 is from the Weibull distribution with parameters (2,3) (we denote by W the corresponding
c.d.f.) and X is built such that X = W−1(S), with S a mixture of two beta distributions:
B(14, 37) with probability 4/5 and B(14, 20) with probability 1/5. The example is borrowed
from Molanes-López and Cao (2008a). Let us look at the beams of estimates r̂m̃: in Figure 3, 10
estimators built from i.i.d. samples of data are plotted together with the true functions. This
illustrates that increasing n0 for fixed n seems to improve more substantially the risk than the
other way round (the improvement when n0 increases appears horizontally in Figure 3). Such a
phenomenon also appears when a more quantitative criterion is considered: the MISE in Table
2 are not symmetric with respect to n and n0, even if, as expected, they all get smaller when the
sample sizes n and n0 increase. Even if this can be suprising when compared with the theory,
recall that the relative density of X with respect to X0 is not the same as the relative density of
X0 with respect to X. The role of the reference variable is coherently more important, even if it
is not clear in the convergence rate of Corollary 2. The details of the computation in the proofs
also show that n and n0 do not play similar roles (see e.g. Lemma 9). An explanation may
be the following: in the method, the sample (Xi)i∈{1,...,n} is used in a nonparametric way, like
in classical density estimation, while the other, that is (X0,i0)i0∈{1,...,n0} is usefull through the
empirical c.d.f. which is known to be convergent at a parametric rate, faster than the previous
one. Notice finally that the same results are obtained for estimators computed from the sets of
observations described in the supplementary material (see Table 2 in Chagny and Lacour 2014).
In any case, such results might be used by a practitioner, when the choice of the reference sample
is not natural: a judicious way to decide which of the sample which play the role of (X0,i0) is to
choose the larger one.

5. Proofs

Detailed proofs of Proposition 1 and Theorem 2 are gathered in this section. The proofs
of Theorems 3 and 4 are only sketched. Complete proofs are available in Section 3 of the
supplementary material (Chagny and Lacour, 2014).

5.1. Preliminary notations and results.
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Figure 3. Beams of 10 estimators built from i.i.d. samples of various sizes
(n;n0) (thin lines) versus true function (thick line) in Example (3).

n\n0 50 100 200 400
50 12.05 7.977 5.631 3.745
100 11.68 7.596 4.789 3.297
200 12.57 7.557 4.831 2.731
400 11.26 7.445 4.429 2.729

Table 2. Values of MISE ×10 averaged over 500 samples for the estimator r̂m̃, in

Example (3).

5.1.1. Notations. We need additional notations in this section. First, we specify the definition
of the procedure. The estimators r̂m, m ∈ M defined by (3) are now denoted by r̂m(., F̂0). Its

coefficients in the Fourier basis are âF̂0
j . When we plug F0 in (3), we denote it by r̂m(., F0), and the

coefficients by âF0
j . Then, we set U0,i0 = F0(X0,i0) (i0 = 1, . . . , n0), and let Û0 be the empirical
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c.d.f. associated to the sample (U0,i0)i0=1,...,n0 . We also denote by E[.|(X0)] the conditional
expectation given the sample (X0,i0)i0=1,...,n0 (the conditional variance will be coherently denoted
by Var(.|(X0))).

Finally, for any measurable function t defined on (0; 1), we denote by ‖t‖∞ the quantity
supx∈(0;1) |t(x)|, and id is the function such that u 7→ u, on the interval (0; 1).

5.1.2. Useful tools. Key arguments for the proofs are the deviations properties of the empirical
c.d.f. F̂0 of the sample (X0,i0)i0 .

First, recall that U0,i0 is a uniform variable on (0; 1) and that F̂0(F
−1
0 (u)) = Û0(u), for

all u ∈ (0; 1). Keep in mind that the random variable supx∈A0
|F̂0(x) − F0(x)| has the same

distribution as ‖Û0 − id‖∞. The following inequalities are used several times to control the
deviations of the empirical c.d.f. Ûn. Dvoretzky et al. (1956) established the first one.

Proposition 5. (Dvoretzky-Kiefer-Wolfowitz’s Inequality) There exists a constant C > 0, such
that, for any integer n0 ≥ 1 and any λ > 0,

P

(∥∥∥Û0 − id
∥∥∥
∞

≥ λ
)
≤ C exp

(
−2n0λ

2
)
.

By integration, we then deduce a first other bound:

Proposition 6. For any integer p > 0, there exists a constant Cp > 0 such that

E

[∥∥∥Û0 − id
∥∥∥
p

∞

]
≤ Cp

n
p/2
0

.

More precise bounds are also required:

Corollary 3. For any κ > 0, for any integer p ≥ 2, there exists also a constant C such that

(11) E

[(∥∥∥Û0 − id
∥∥∥
p

∞
− κ

lnp/2(n0)

n
p/2
0

)

+

]
≤ Cn−2

2−p
p κ2/p

0 .

5.1.3. The Talagrand Inequality. The proofs of the main results (Theorems 2 and 3) are based
on the use of concentration inequalities. The first one is the classical Bernstein Inequality, and
the second one is the following version of the Talagrand Inequality.

Proposition 7. Let ξ1, . . . , ξn be i.i.d. random variables, and define νn(s) = 1
n

∑n
i=1 s(ξi) −

E[s(ξi)], for s belonging to a countable class S of real-valued measurable functions. Then, for
δ > 0, there exist three constants cl, l = 1, 2, 3, such that

E

[(
sup
s∈S

(νn (s))
2 − c(δ)H2

)

+

]
≤ c1

{
v

n
exp

(
−c2δ

nH2

v

)
(12)

+
M2

1

C2(δ)n2
exp

(
−c3C(δ)

√
δ
nH

M1

)}
,

with C(δ) = (
√
1 + δ − 1) ∧ 1, c(δ) = 2(1 + 2δ) and

sup
s∈S

‖s‖∞ ≤M1, E

[
sup
s∈S

|νn(s)|
]
≤ H, and sup

s∈S
Var (s (ξ1)) ≤ v.

Inequality (12) is a classical consequence of Talagrand’s Inequality given in Klein and Rio
(2005): see for example Lemma 5 (page 812) in Lacour (2008). Using density arguments, we can
apply it to the unit sphere of a finite dimensional linear space.
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5.2. Proof of Proposition 1. A key point is the following decomposition which holds for any
index m

∥∥∥r̂m(., F̂0)− r
∥∥∥
2
≤ 3Tm

1 + 3Tm
2 + 3 ‖r̂m(., F0)− r‖2 ,

with

(13)
Tm
1 =

∥∥∥r̂m(., F̂0)− r̂m(., F0)− E

[
r̂m(., F̂0)− r̂m(., F0) |(X0)

]∥∥∥
2
,

Tm
2 =

∥∥∥E
[
r̂m(., F̂0)− r̂m(., F0) |(X0)

]∥∥∥
2
.

We have already proved (see (4) and (5)) that ‖r̂m(., F0)− r‖2 ≤ Dm/n+ ‖rm − r‖2. Therefore,
it remains to apply the two following lemmas, proved in the two following sections.

Lemma 8. Under the assumptions of Proposition 1,

E [Tm
1 ] ≤ 2π2

D3
m

nn0

Lemma 9. Under the assumptions of Proposition 1, ,

E [Tm
2 ] ≤ 3‖r‖2Dm

n0
+ 3

π4

4
C4‖r‖2

D4
m

n20
+

32π6C6

3
‖r‖2D

7
m

n30
+ 3

‖r′‖2
n0

.

The result follows if Dm ≤ κn
1/3
0 .

✷

5.2.1. Proof of Lemma 8. The decompositions of the estimator in the orthogonal basis (ϕj)j
yields

Tm
1 =

Dm∑

j=1

(
âF̂0
j − âF0

j − E

[
âF̂0
j − âF0

j |(X0)
])2

,

and therefore, E[Tm
1 |(X0)] =

∑Dm
j=1 Var(âF̂0

j − âF0
j |(X0)). Moreover, for any index j,

Var
(
âF̂0
j − âF0

j |(X0)
)

≤ 1

n
E

[(
ϕj ◦ F̂0(X1)− ϕj ◦ F0(X1)

)2
|(X0)

]
,

≤ 1

n

∥∥ϕ′
j

∥∥2
∞

∫

A

(
F̂0(x)− F0(x)

)2
f(x)dx,

by using the mean-value theorem. Since ‖ϕ′
j‖2∞ ≤ 8π2D2

m in the Fourier basis, this leads to

E [Tm
1 ] ≤ 8π2

n
D3

m

∫

A
E

[(
F̂0(x)− F0(x)

)2]
f(x)dx.

Notice finally that E[(F̂0(x) − F0(x))
2] = Var(F̂0(x)) = (F0(x)(1 − F0(x)))/n0 ≤ 1/(4n0). This

permits to conclude the proof of Lemma 8.

✷
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5.2.2. Proof of Lemma 9. Arguing as in the beginning of the proof of Lemma 8 yields

Tm
2 =

Dm∑

j=1

(∫

A

(
ϕj ◦ F̂0(x)− ϕj ◦ F0(x)

)
f(x)dx

)2

.(14)

We apply the Taylor formula to the function ϕj, with the Lagrange form for the remainder. There
exists a random number α̂j,n0,x such that the following decomposition holds: Tm

2 ≤ 3Tm
2,1+3Tm

2,2+
3Tm

2,3, where

Tm
2,1 =

Dm∑

j=1

(∫

A
ϕ′
j(F0(x))

(
F̂0(x)− F0(x)

)
f(x)dx

)2

,

Tm
2,2 =

Dm∑

j=1



∫

A
ϕ′′
j (F0(x))

(
F̂0(x)− F0(x)

)2

2
f(x)dx




2

,

Tm
2,3 =

Dm∑

j=1



∫

A
ϕ
(3)
j (α̂j,n0,x)

(
F̂0(x)− F0(x)

)3

6
f(x)dx




2

.

We now bound each of these three terms. Let us begin with Tm
2,1. The change of variables

u = F0(x) permits to obtain first

Tm
2,1 =

Dm∑

j=1

(∫

(0;1)
ϕ′
j(u)

(
Û0(u)− u

)
r(u)du

)2

,

and, with the definition of Û0(u), we get

Tm
2,1 =

Dm∑

j=1

(
1

n0

n0∑

i=1

Bi,j − E[Bi,j]

)2

, with Bi,j =

∫ 1

U0,i

r(u)ϕ′
j(u)du.

An integration by parts for Bi,j leads to another splitting Tm
2,1 ≤ 2Tm

2,1,1 +2Tm
2,1,2, with notations

Tm
2,1,1 =

Dm∑

j=1

{
1

n0

n0∑

i=1

r(U0,i)ϕj(U0,i)− E [r(U0,i)ϕj(U0,i)]

}2

,

Tm
2,1,2 =

Dm∑

j=1

{∫

(0;1)
r′(u)

(
Û0(u)− u

)
ϕj(u)du

}2

.

The expectation of the first term is a variance and is bounded as follows:

E
[
Tm
2,1,1

]
≤ 1

n0

Dm∑

j=1

E

[
(r(U0,1)ϕj(U0,1))

2
]
≤
∫ 1

0
r(u)2du

Dm

n0
.

For Tm
2,1,2, we use the definitions and properties of the orthogonal projection operator ΠSm on

the space Sm:

Tm
2,1,2 =

Dm∑

j=1

(
〈r′(Û0 − id), ϕj〉(0;1)

)2
=
∥∥∥ΠSm(r

′(Û0 − id))
∥∥∥
2
,

≤
∥∥∥r′(Û0 − id)

∥∥∥
2
≤ ‖r′‖2‖Û0 − id‖2∞.
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Applying Proposition 6 proves that E[Tm
2,1,2] ≤ C2‖r′‖2/n0. Therefore,

(15) E
[
Tm
2,1

]
≤ ‖r‖2Dm

n0
+C2‖r′‖2

1

n0
.

Consider now Tm
2,2. The trigonometric basis satisfies ϕ′′

j = −(πµj)
2ϕj , with µj = j for even

j ≥ 2, and µj = j − 1 for odd j ≥ 2. We thus have,

E
[
Tm
2,2

]
= (π4/4)E




Dm∑

j=1

{∫

(0;1)
r(u)

(
Û0(u)− u

)2
µ2jϕj(u)du

}2

 ,

≤ (π4/4)D4
mE




Dm∑

j=1

{
〈r
(
Û0 − id

)2
, ϕj〉(0;1)

}2

 ,

≤ (π4/4)D4
mE

[∥∥∥∥r
(
Û0 − id

)2∥∥∥∥
2
]
≤ (π4/4)D4

mE

[∥∥∥Û0 − id
∥∥∥
4

∞

] ∫

(0;1)
r2(u)du.

Thanks to Proposition 6, we obtain

(16) E
[
Tm
2,1

]
≤ C4(π

4/4)‖r‖2D
4
m

n20
.

The last term is then easily controlled, using also Proposition 6:

E
[
Tm
2,3

]
≤ 32π6

9

Dm∑

j=1

‖r‖2E
[∥∥∥Û0 − id

∥∥∥
6

∞

]
≤ 32π6C6

9
‖r‖2D

7
m

n30
.(17)

Lemma 9 is proved by gathering (15), (16) and (17).

✷

5.3. Proof of Theorem 2. In the proof, C is a constant which may change from line to line,
and is independent of all m ∈ M, n, and n0. Let m ∈ M be fixed. The following decomposition
holds:

∥∥∥r̂m̂
(
., F̂0

)
− r
∥∥∥
2

≤ 3
∥∥∥r̂m̂

(
., F̂0

)
− r̂m∧m̂

(
., F̂0

)∥∥∥
2

+3
∥∥∥r̂m∧m̂

(
., F̂0

)
− r̂m

(
., F̂0

)∥∥∥
2
+ 3

∥∥∥r̂m
(
., F̂0

)
− r
∥∥∥
2
.

We use successively the definition of A(m̂), A(m), and m̂ to obtain
∥∥∥r̂m̂

(
., F̂0

)
− r
∥∥∥
2

≤ 6 (A(m) + V (m)) + 3
∥∥∥r̂m

(
., F̂0

)
− r
∥∥∥
2
.

Keeping in mind that we can split ‖r̂m(., F̂0) − r‖2 ≤ 3Tm
1 + 3Tm

2 + 3‖r̂m(., F0) − r‖2 with the
notations of Section 5.2, we derive from (4) and (5):

∥∥∥r̂m̂
(
., F̂0

)
− r
∥∥∥
2

≤ 6 (A(m) + V (m)) + 9Tm
1 + 9Tm

2 + 9
Dm

n
+ 9 ‖rm − r‖2 .

We also apply Lemmas 8 and 9. Taking into account that Dm ≤ κn
1/3
0 , we thus have

E

[∥∥∥r̂m̂
(
., F̂0

)
− r
∥∥∥
2
]

≤ 6E [A(m)] + 6V (m) + C
Dm

n
+ C‖r‖2Dm

n0

+9 ‖rm − r‖2 + C

n0
+
C

n
.
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Therefore, the conclusion of Theorem 2 is the result of the following lemma.

Lemma 10. Under the assumptions of Theorem 2, there exists a constant C > 0 such that, for
any m ∈ M,

E [A(m)] ≤ C

(
1

n
+

1

n0

)
+ 12 ‖rm − r‖2 .

✷

5.3.1. Proof of Lemma 10. To study A(m, F̂0), we write, for m′ ∈ M.
∥∥∥r̂m′

(
., F̂0

)
− r̂m∧m′

(
., F̂0

)∥∥∥
2

≤ 3
∥∥∥r̂m′

(
., F̂0

)
− rm′

∥∥∥
2
+ 3 ‖rm′ − rm∧m′‖2

+3
∥∥∥rm∧m′ − r̂m∧m′

(
., F̂0

)∥∥∥
2
.

Let S(pm′) be the set {t ∈ Spm′
, ‖t‖ = 1}, for pm′ = m′ or pm′ = m ∧m′ . We note that

(18)
∥∥∥rpm′

− r̂pm′
(., F̂0)

∥∥∥
2
=

Dp
m′∑

j=1

(ν̃n(ϕj))
2 = sup

t∈S(pm′ )
ν̃n(t)

2,

with ν̃n(t) = n−1
∑n

i=1 t ◦ F̂0(Xi)− E[t ◦ F0(Xi)]. Since the empirical process ν̃n is not centered,
we consider the following splitting: (ν̃n(t))

2 ≤ 2ν2n(t) + 2((1/n)
∑n

i=1(t ◦ F̂0(Xi)− t ◦ F0(Xi)))
2,

with

(19) νn(t) =
1

n

n∑

i=1

(t ◦ F0(Xi)− E [t ◦ F0(Xi)]) .

But we also have

sup
t∈S(pm′ )

(
1

n

n∑

i=1

(
t ◦ F̂0(Xi)− t ◦ F0(Xi)

))2

=

Dp
m′∑

j=1

(
âF̂0
j − âF0

j

)2
≤ 2T

pm′

1 + 2T
pm′

2 ,

with the notations of Section 5.2. This shows that

(20)
∥∥∥rpm′

− r̂pm′
(., F̂0)

∥∥∥
2
≤ 2 sup

t∈S(pm′ )
(νn(t))

2 + 4T
pm′

1 + 4T
pm′

2 .

We thus have∥∥∥r̂m′

(
., F̂0

)
− r̂m∧m′

(
., F̂0

)∥∥∥
2

≤ 6 sup
t∈S(m′)

(νn(t))
2 + 6 sup

t∈S(m∧m′)
(νn(t))

2 + 12Tm′

2 + 12Tm∧m′

2

+12Tm′

1 + 12Tm∧m′

1 + 3 ‖rm′ − rm∧m′‖2 .
We get back to the definition of A(m). To do so, we subtract V (m′). For convenience, we split
it into two terms: V (m′) = V (1)(m′) + V (2)(m′), with V (1)(m′) = c0Dm/n, and V (2)(m′) =
c0‖r‖2Dm/n0. Thus,

E [A (m)] ≤ 6E

[
max
m′∈M

(
sup

t∈S(m′)
(νn(t))

2 − V (1)(m′)

12

)

+

]
+ 3 max

m′∈M
‖rm′ − rm∧m′‖2

+6E

[
max
m′∈M

(
sup

t∈S(m∧m′)
(νn(t))

2 − V (1)(m′)

12

)

+

]
+ 12E

[
max
m′∈M

(
Tm′

2 − V (2)(m′)

24

)

+

]

+12E

[
max
m′∈M

(
Tm∧m′

2 − V (2)(m′)

24

)

+

]
+ 12E

[
max
m′∈M

Tm′

1

]
+ 12E

[
max
m′∈M

Tm∧m′

1

]
.
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For the deterministic term, we notice that

max
m′∈M

‖rm′ − rm∧m′‖2 ≤ 2 max
m′∈M
m≤m′

‖rm′ − r‖2 + 2 ‖r − rm‖2 .

If m ≤ m′, the spaces are nested Sm ⊂ Sm′ , thus the orthogonal projections rm and rm′ of r
onto Sm and S′

m respectively satisfy ‖rm′ − r‖2 ≤ ‖rm − r‖2. Thus,

max
m′∈M

‖rm′ − rm∧m′‖2 ≤ 4 ‖rm − r‖2 .(21)

Moreover, for pm′ = m′ or pm′ = m∧m′, T pm′

1 ≤ Tmmax
1 (recall that mmax is the largest index in

the collection M). Therefore,

12E

[
max
m′∈M

Tm′

1

]
+ 12E

[
max
m′∈M

Tm∧m′

1

]
≤ 24E [Tmmax

1 ] ≤ C
D3

mmax

nn0
≤ C

n
.

Consequently, we have at this stage

E [A (m)] ≤ C

n
+ 12 ‖rm − r‖2 + 6E

[
max
m′∈M

(
sup

t∈S(m′)
(νn(t))

2 − V (1)(m′)

12

)

+

]

+6E

[
max
m′∈M

(
sup

t∈S(m∧m′)
(νn(t))

2 − V (1)(m′)

12

)

+

]

+12E

[
max
m′∈M

(
Tm′

2 − V (2)(m′)

24

)

+

]
+ 12E

[
max
m′∈M

(
Tm∧m′

2 − V (2)(m′)

24

)

+

]
.

Since V (l)(m′) ≥ V (l)(m′ ∧m) it remains to bound the two following terms:

E

[
max
m′∈M

(
sup

t∈S(pm′ )
(νn(t))

2 − V (1)(pm′)

12

)

+

]
and E

[
max
m′∈M

(
T
pm′

2 − V (2)(pm′)

24

)

+

]

We use the two following lemmas. The first one is proved below, the second one is proved in
Section 3.1 of the supplementary material (Chagny and Lacour, 2014).

Lemma 11. Assume that r is bounded on (0; 1). The deviations of the empirical process νn
defined by (19) can be controlled as follows,

∀δ > 0, E

[
max
m′∈M

{
sup

t∈S(pm′ )
ν2n(t)− V̄δ(pm′)

}

+

]
≤ C(δ)

n
,

where V̄δ(pm′) = 2(1 + 2δ)Dpm′
/n, and C(δ) a constant which depends on δ.

We fix a δ > 0 (e.g. δ = 1/2). We choose c0 in the definition of V (see (7)) large enough
to have V (1)(pm′)/12 ≥ V̄δ(pm′), for every m′. The inequality of Lemma 11 with V (1)(pm′) as a
replacement for V̄δ(pm′).

Lemma 12. Under the assumptions of Theorem 2,

E

[
max
m′∈M

(
T
pm′

2 − V2(pm′)
)
+

]
≤ C

n0
,

with V2(pm′) = c2‖r‖2Dp′m/n0, c2 a positive constant large enough, and C depending on the basis,
on r, and on the constants Cp of Proposition 6.
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We choose c0 in the definition of V (see (7)) large enough to have V (2)(pm′)/24 ≥ V2(pm′), for
every m′. This enables to apply Lemma 12 with V (2)(pm′) as a replacement for V2(pm′).

The proof of Lemma 10 is completed.

✷

5.3.2. Proof of Lemma 11. We roughly bound

E

[
max
m′∈M

{
sup

t∈S(pm′ )
ν2n(t)− V̄δ(pm′)

}

+

]
≤
∑

m′∈M

E

[{
sup

t∈S(pm′ )
ν2n(t)− V̄δ(pm′)

}

+

]
.

We apply the Talagrand Inequality recalled in Proposition 7. To this aim, we compute M1, H2

and v. Write for a moment νn(t) = (1/n)
∑n

i=1 ψt(Xi)− E[ψt(Xi)], with ψt(x) = t ◦ F0(x).

• First, for t ∈ S(pm′), supx∈A |ψt(x)| ≤ ‖t‖∞ ≤
√
Dpm′

‖t‖ =
√
Dpm′

=:M1.
• Next, we develop t ∈ S(pm′) in the orthogonal basis (ϕj)j=1,...,Dp

m′
. This leads to

E

[
sup

t∈S(pm′ )
ν2n(t)

]
≤

Dp
m′∑

j=1

E
[
νn(ϕ

2
j )
]
=

Dp
m′∑

j=1

E

[(
âF0
j − aj

)2]
≤ Dpm′

n
=: H2,

thanks to the upper-bound for the variance term (see (5)).
• Last, for t ∈ S(pm′), Var(ψt(X1)) ≤

∫
A t

2(F0(x))f(x)dx =
∫
(0;1) t

2(u)r(u)du ≤ ‖r‖∞‖t‖2 =
‖r‖∞ =: v.

Inequality (12) gives, for δ > 0,

∑

m′∈M

E

[(
sup

t∈S(pm′ )
ν2n(t)− c(δ)H2

)

+

]
≤ c1

∑

m′∈M

{
1

n
exp

(
−c2δDpm′

)

+
Dpm′

C2(δ)n2
exp

(
−c3C(δ)

√
δ
√
n
)}

,

where cl, l = 1, 2, 3 are three constants. Now, it is sufficient to use that Dp′m = 2pm′ + 1, and
that the cardinal of M is bounded by n to end the proof of Lemma 11.

5.4. Sketch of the proof of Theorem 3. The main idea is to introduce the set

Λ =

{∣∣∣∣∣
‖r̂m∗(., F̂0)‖

‖r‖ − 1

∣∣∣∣∣ <
1

2

}
,

and to split

E

[
‖r̂m̃(., F̂0)− r‖2

]
= E

[
‖r̂m̃(., F̂0)− r‖21Λ

]
+ E

[
‖r̂m̃(., F̂0)− r‖21Λc

]
.

Then, the aim is to show that the first term give the order of the upper-bound of Theorem 3, and
that the probability of the set Λc is negligible compared to 1/n + 1/n0. See the supplementary
material Chagny and Lacour (2014, Section 3.2).
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5.5. Sketch of the proof of Theorem 4. Denote by φn,n0 = (min(n, n0))
−2α/(2α+1). Since

there exists a constant c′ > 0 (depending on α) such that (n−1 + n−1
0 )2α/(2α+1) ≤ c′φn,n0 , it

is sufficient to prove Inequality (10) with the lower bound φn,n0 . We also separate two cases:
n ≤ n0 and n > n0. Then the result comes down to the proof of two inequalities. For each
of these inequalities, the proof is based on the general reduction scheme which can be found
in Section 2.6 of Tsybakov (2009): the main idea is to reduce the class of functions Fα to a
finite well-chosen subset {ra, r1, . . . , rM}, M ≥ 2. All the technical details are provided in the
supplementary material Chagny and Lacour (2014, Section 3.3).
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