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Abstract. This supplementary material provides additional details for the paper ”Optimal
adaptive estimation of the relative density”. We first recall a precise definition of Besov spaces,
which are used to compute the rates of convergence of the estimator. Then, we present further
simulation results (reconstruction and risk computations), as well as details about the calibration
of the penalty constant. Finally, complete proofs which are only sketched in the main article
are available.
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1. Definition of Besov spaces

For A a subset of R, let us recall the definition of Bα
p,∞(A). Let Ak

h = {x ∈ R, x, x +

h, . . . , x+ kh ∈ A}. Next, for x in Ak
h, let

∆k
hr(x) =

k∑

i=0

(−1)k−i

(
k

i

)
r(x+ ih)

the kth difference operator with step h. For t > 0, the moduli of smoothness of function r is
given by

ωk(r, t) = sup
|h|≤t

(∫

Ak
h

|∆k
hr(x)|pdx

)1/p

.

We say that r is in the Besov space Bα
p,∞(A) if supt>0 t

−αωk(r, t) < ∞ for k the smaller integer
larger than α. The Besov norm ‖.‖α,p is defined by:

‖r‖α,p = ‖r‖p + sup
t>0

t−αωk(r, t).

It can be proved that Bα
p,∞((0; 1)) ⊂ Bα

2,∞((0; 1)) for p ≥ 2. This justifies that we restrict to
Bα
2,∞((0; 1)).

2. Additional simulation results

This section is devoted to giving additional simulation results.
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2.1. Additional reconstructions and risk computations. In this section, we present sim-
ulation results for examples of data which complete the three models given in Section 4 of the
main article. First, Table 1 gives the details of the MISE which are partly plotted in Figure 2
of the main article, for samples simulated from Example (2) described in Section 4.2. Then, we
investigate other examples. The two samples (X0,i0)i0=1,...,n0 and (Xi)i=1,...,n comes from random
variables X0 and X respectively, with probability distributions described below.

(3) The variable X0 is from the Weibull distribution with parameters (2,3). We denote by W
the corresponding c.d.f.. The variable X is built such that X =W−1(S), with S chosen
from one of the three following distribution:
(a3) a beta distribution B(14, 17),
(b3) a mixture of V1 with probability 4/5 and V2 with probability 1/5, where V1 is from

B(14, 37) and V2 is from B(14, 20),
(c3) a mixture of V1 with probability 1/3 and V2 with probability 2/3, where V1 is from

B(34, 15) and V2 is from B(15, 30).
In these three cases, the relative density r to recover is the density of the variable S.
Example (b3) is the one considered to evaluate the influence of n and n0 in Section 4.3
(main article).

(4) The variable X0 is chosen to have a uniform distribution in the set (0; 1). The variable
X fits one of the following models:
(a4) (1/4)(U1 + U2 + U3 + U4) where Uj , j = 1, . . . , 4 are independent and uniform on

(0; 1),
(b4) a mixture of V1 with probability 1/2 and V2 with probability 1/2, where V1 = V/2

and V2 = (V + 1)/2, and V as for model (a),
(c4) a beta distribution with parameters 4 and 5 (denoted by B(4, 5)),
(d4) a mixture of Xj, j = 1, 2, 3 with probability 1/3, where the Xj have respective

distributions B(10, 5), B(7, 7) and B(5, 10),
(e4) a mixture of X1 with probability 1/2 and X2 with probability 1/2, where X1 and

X2 have respective distributions B(15, 4) and B(5, 11).
Hence the investigated relative densities are defined as the densities of X, in these five
examples.

The third set of examples is borrowed from Molanes-López and Cao (2008) and the fourth from
Ćwik and Mielniczuk (1993). The true relative densities associated to each framework of these
two sets are plotted in Figure 1: they are quite far from the uniform distribution, since the
distributions of X and X0 are not similar.

Figure 2 illustrates the stability of the method and shows beams of estimates r̂m̃: 10 estimators
built from i.i.d. samples of data are plotted together with the true functions. The MISE,
displayed in Table 2, are of the same order as the ones of Ćwik and Mielniczuk (1993) and of
Molanes-López and Cao (2008), as announced in Section 4 of the main article. However, the
fully data-driven model selection method we implement is also shown to be optimal in theory,
from the non-asymptotic point of view.

2.2. Details about penalty calibration. The choice of the value 1 for the constant c0 involved
in the penalty term Ṽ (m) = c0(Dm/n+ 4‖r̂m∗‖2Dm/n0) (see (9), Section 3 of the main article)
has not been commented in detail until now. Since it plays an important role for the quality of
the adaptive estimation, we propose to briefly shed light on its choice.

As explained in the main article, the numerical value obtained in the proof is rough and
useless in practice. We thus experiment the tuning by simulation. More precisely, we choose
different models for the data, already used in the paper, and experiment several values for c0.
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Figure 1. Plot of the different investigated relative densities of Examples (3) and (4)

The MISE is plotted with respect to possible values for c0, from 0.001 to 4. The results are
given in Figure 3 for two sets of examples, Example (2) (a2) described in Section 4.2 of the main
article and Example (4) described above (Section 2.1). Considering the graphs, the constant c0
should not be chosen too small, neither too large. Actually, the adaptive index m̃ is selected as
the one which realizes the best trade-off between the estimator of the bias term Ã(m) and the
variance term Ṽ (m). Then, heuristically, if c0 is too large the compromise is made in favour of
Ṽ (m). As this term increases with m, we select too small models (over-penalization). On the
contrary, if c0 is too small, large models are selected. We decide to choose the value 1 which
leads to reasonable risks. Another value in the range [0.5; 1.5] just improves the results for some
examples and deteriorates them for some others.

3. Additional proofs

Complete proofs for technical results of the main article are provided in this section. The
notations are the same as the one introduced in Section 5.1.1 of the main article. We also use
the results established in Section 5.1.2, and more generally, we often refer to the proofs of Section
5.

3.1. Proof of Lemma 12. The aim is to bound E[maxm′∈M(T
pm′
2 − V2(pm′))+], where T pm′

2 is
defined by

Tm
2 =

∥∥∥E
[
r̂m(., F̂0)− r̂m(., F0) |(X0)

]∥∥∥
2
.

The proof is based on the proof of Lemma 9, Section 5.2.2 of the main article. Let us abbreviate
pm′ by p. We proceed as in this proof and obtain T p

2 ≤ 6T p
2,1,1 + 6T p

2,1,2 + 3T p
2,2 + 3T p

2,3. Thus,

E

[
max
m′∈M

(T p
2 − V2(p))+

]
≤ E

[
max
m′∈M

(
6T p

2,1,1 − V2(p)/3
)
+

]
+ E

[
max
m′∈M

6T p
2,1,2

]
(1)

+E

[
max
m′∈M

(
3T p

2,2 − V2(p)/3
)
+

]

+E

[
max
m′∈M

(
3T p

2,3 − V2(p)/3
)
+

]
.
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Figure 2. Beams of 10 estimators built from i.i.d. samples of size n = n0 = 500
(thin lines) versus true function (thick line) in Examples (3) and (4).
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Example (a2)

n\n0 50 100 200 400
50 0.220 0.168 0.162 0.196
100 0.088 0.123 0.137 0.085
200 0.141 0.103 0.083 0.089
400 0.105 0.092 0.057 0.039

c = 1.01

n\n0 50 100 200 400
50 0.221 0.212 0.166 0.220
100 0.132 0.137 0.126 0.132
200 0.139 0.134 0.113 0.089
400 0.137 0.146 0.071 0.066

c = 1.05

n\n0 50 100 200 400
50 0.288 0.296 0.308 0.275
100 0.236 0.236 0.222 0.215
200 0.211 0.199 0.199 0.162
400 0.227 0.191 0.152 0.150

c = 1.1

n\n0 50 100 200 400
50 2.200 1.842 1.496 1.357
100 1.990 1.383 1.126 0.878
200 1.778 1.149 0.918 0.769
400 1.717 1.081 0.786 0.720

c = 1.5

Example (b2)

n\n0 50 100 200 400
50 0.245 0.190 0.156 0.184
100 0.129 0.128 0.100 0.099
200 0.165 0.101 0.080 0.067
400 0.115 0.096 0.066 0.044

a = 2.01

n\n0 50 100 200 400
50 0.270 0.208 0.228 0.221
100 0.212 0.174 0.150 0.122
200 0.214 0.138 0.109 0.101
400 0.134 0.102 0.090 0.071

a = 2.05

n\n0 50 100 200 400
50 0.335 0.311 0.284 0.284
100 0.295 0.227 0.238 0.203
200 0.264 0.259 0.193 0.186
400 0.260 0.196 0.163 0.157

a = 2.1

n\n0 50 100 200 400
50 3.253 3.262 3.169 3.170
100 3.320 3.162 3.035 2.984
200 3.249 3.029 2.946 2.848
400 3.236 3.031 2.866 2.728

a = 2.5

Table 1. Values of MISE ×10 averaged over 500 samples for the estimator r̂m̃, in

Examples (2) (a2) and (b2).

We do not subtract V (p) to one of the term, since we immediately derive from Section 5.2.2

(2) E

[
max
m′∈M

6T p
2,1,2

]
≤ E

[
6Tmmax

2,1,2

]
≤ 6C2‖r′‖2/n0.

For the term depending on T p
2,1,1, note that T p

2,1,1 =
∑Dp

j=1(ν
b
n0
(ϕj))

2, with

νbn0
(t) =

1

n0

n0∑

i0=1

ψt(X0,i0)− E [ψt(X0,i)] , with ψt(x) = r(F0(x))t(F0(x)).
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n\n0 50 100 200 400
50 10.27 6.117 3.743 2.468
100 9.958 5.394 3.496 2.208
200 9.100 5.651 3.204 1.883
400 9.439 5.303 3.190 1.849

Example (a3)

n\n0 50 100 200 400
50 12.05 7.977 5.631 3.745
100 11.68 7.596 4.789 3.297
200 12.57 7.557 4.831 2.731
400 11.26 7.445 4.429 2.729

Example (b3)

n\n0 50 100 200 400
50 9.041 6.026 3.904 2.855
100 8.179 5.396 3.319 1.929
200 8.113 5.055 2.915 1.659
400 7.886 4.855 2.726 1.589

Example (c3)

n\n0 50 100 200 400
50 2.712 1.870 1.362 1.110
100 2.561 1.765 1.126 0.863
200 2.576 1.647 1.114 0.729
400 2.567 1.630 0.989 0.636

Example (a4)

n\n0 50 100 200 400
50 5.833 3.513 2.288 1.741
100 5.377 3.203 2.008 1.446
200 5.392 3.217 1.925 1.286
400 4.609 3.086 1.927 1.195

Example (b4)

n\n0 50 100 200 400
50 2.172 1.383 0.952 0.799
100 1.966 1.270 0.798 0.544
200 2.064 1.135 0.696 0.481
400 1.928 1.147 0.681 0.424

Example (c4)

n\n0 50 100 200 400
50 2.153 1.305 0.926 0.747
100 1.768 1.064 0.714 0.549
200 1.510 0.929 0.597 0.441
400 1.585 0.911 0.549 0.377

Example (d4)

n\n0 50 100 200 400
50 4.364 2.838 2.043 1.590
100 3.731 2.159 1.372 0.969
200 3.511 1.810 1.109 0.816
400 3.272 1.649 0.982 0.675

Example (e4)

Table 2. Values of MISE ×10 averaged over 500 samples for the estimator r̂m̃, in

Examples (3) and (4).

We proceed as in (18) (see the main article) to write T p
2,1,1 = supt∈S(p)(ν

b
n0
(t))2. We anew apply

the Talagrand Inequality (Proposition 7, Section 5.1.3). We easily compute M1 = ‖r‖∞
√
Dp,

and v = ‖r‖2∞. For H2, the same computations as in Lemma 9, Section 5.2.2, give

E

[
sup

t∈S(p)

(
νbn0

(t)
)2
]
= E

[
T p
2,1,1

]
≤ ‖r‖2Dp

n0
:= H2.

The result is the following, with V2,1,1(p) = 6× 2(1 + 2δ)‖r‖2Dp/n0, δ > 0,

(3) E

[
max
m′∈M

(
6T p

2,1,1 − V2,1,1(p)
)
+

]
≤ C

n0
.
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Figure 3. Values of the MISE (averaged over 500 samples) for n = n0 = 500
with respect to the constant c0.

For the term in which T p
2,2 is involved, we begin with

E

[
max
m′∈M

(
3T p

2,2 −
V2(p)

3

)

+

]
≤
∑

m′∈M

E

[(
3T p

2,2 −
V2(p)

3

)

+

]
,

and compute the right-hand side, for a fixed index p. We prove in Section 5.2.2 that T p
2,2 ≤

(π4/4)‖r‖2D4
p‖Û0 − id‖4∞. Corollary 3 (Section 5.1.2) with p = 4 gives, for all κ > 0,

E

[(∥∥∥Û0 − id
∥∥∥
4

∞
− κ

ln2(n0)

n20

)

+

]
≤ Cn

− 1√
2
κ1/2

0 .

Therefore, denoting by V2,2(p) = (3π4/4)‖r‖2κD4
p ln2(n0)

n2
0

,

(4) E

[
max
m′∈M

(
3T p

2,2 − V2,2(p)
)
+

]
≤ C

∑

m′∈M

D4
pn

− 1√
2
κ1/2

0 .

But we roughly bound
∑

m′∈MD4
p ≤ D5

mmax
≤ n50. The right-hand side of (4) is thus bounded

by Cn
5−
√

κ/2
0 , with c a constant, and this last bound is smaller than C/n0 if κ is large enough.

Since we assume Dp ≤ n
1/3
0 / ln2/3(n), we have V2,2(p) ≤ V bis

2,2 (p) = (3π4/4)‖r‖2κDp/n0, and (4)
is still true with V2,2 replaced by V bis

2,2 .

We proceed similarly for the term which depends on T p
2,3. We see in Section 5.2.2 that T p

2,3 ≤
(32π6/9)‖r‖2D7

p‖Û0 − id‖6∞, and thanks to Corollary 3 with p = 6

E

[(∥∥∥Û0 − id
∥∥∥
6

∞
− κ

ln3(n0)

n30

)

+

]
≤ Cn

− 1

21/3
κ2/3

0 .
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Thus, for V2,3(p) = (32π6/9)‖r‖2κD7
p ln

3(n0)/n
3
0,

(5) E

[
max
m′∈M

(
3T p

2,3 − V2,3(p)
)
+

]
≤ C

∑

m′∈M

D4
pn

− 1

21/3
κ2/3

0 .

If κ is large enough, the right-hand side of (5) is bounded by C/n0, and V2,3 can be replaced by

an upper-bound, if Dp ≤ n
1/3
0 / ln1/2(n): V2,3(p) ≤ V bis

2,3 (p) = (32π6/9)‖r‖2κDp/n0.

We gather (2), (3), (4), and (5) in Inequality (1), and choose V2(p) with form c2‖r‖2Dp/n0
for c2 large enough.

✷

3.2. Proof of Theorem 3. The aim is to prove an oracle-type inequality for the fully data-
driven estimator r̂m̃(., F̂0). We introduce the set

Λ =

{∣∣∣∣∣
‖r̂m∗(., F̂0)‖

‖r‖ − 1

∣∣∣∣∣ <
1

2

}
,

and split

E

[
‖r̂m̃(., F̂0)− r‖2

]
= E

[
‖r̂m̃(., F̂0)− r‖21Λ

]
+ E

[
‖r̂m̃(., F̂0)− r‖21Λc

]
.

We show in the sequel that the first term gives the order of the upper-bound of Theorem 3, and
that the probability of the set Λc is negligible compared to 1/n + 1/n0.

• Upper-bound for E[‖r̂m̂(., F̂0) − r‖21Λ]. Arguing as in Section 5.3 (main article), we first
obtain, for m ∈ M

∥∥∥r̂m̃
(
., F̂0

)
− r
∥∥∥
2

≤ 6
(
Ã(m) + Ṽ (m)

)
+ 3

∥∥∥r̂m
(
., F̂0

)
− r
∥∥∥
2
.

Moreover, Ã(m) ≤ A(m) + maxm′∈M(V (m′)− Ṽ (m′))+. Thus
∥∥∥r̂m̃

(
., F̂0

)
− r
∥∥∥
2

≤ 6 (A(m) + V (m)) + 3
∥∥∥r̂m

(
., F̂0

)
− r
∥∥∥
2

+ max
m′∈M

(
V (m′)− Ṽ (m′)

)
+
+ 6

(
Ṽ (m)− V (m)

)
.

For every m ∈ M,

Ṽ (m)− V (m) = c0
Dm

n0

(
4‖r̂m∗(., F̂0)‖2 − ‖r‖2

)
.

On the set Λ, since ‖r‖ < 2‖r̂m∗(., F̂0)‖, we thus have (V (m′) − Ṽ (m′))+ = 0. On this set, we
also have : ‖r̂m∗(., F̂0)‖ ≤ (3/2)‖r‖,

(
Ṽ (m)− V (m)

)
≤ c0

Dm

n0

(
4× 9

4
‖r‖2 − ‖r‖2

)
= 8c0‖r‖2

Dm

n0
.

Using also Lemma 10 enables to conclude

E

[∥∥∥r̂m̃(., F̂0)− r
∥∥∥
2
1Λ

]
≤ min

m∈M

{
Dm

n
+ ‖r‖2Dm

n0
+ 15 ‖rm − r‖2

}
+
C

n
+
C

n0
.

• Upper-bound for E[‖r̂m̃(., F̂0) − r‖21Λc ]. First, ‖r̂m̃(., F̂0) − r‖2 ≤ 2‖r̂m̃(., F̂0)‖2 + 2‖r‖2,
and

∥∥∥r̂m̃(., F̂0)
∥∥∥
2

=

Dm̃∑

j=1

(
âF̂0
j

)2
≤

Dm̃∑

j=1

∥∥ϕ2
j

∥∥
∞

≤ Dm̃ ≤ min(n, n0).
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Thus

E

[
‖r̃m̃(., F̂0)− r‖21Λc

]
≤ P (Λc) 2

(
min(n, n0) + 2‖r‖2

)
.

It remains to bound P(Λc). We split

P(Λc) ≤ 1{
‖r−rm∗‖≥ ‖r‖

4

} + P

(
‖rm∗ − r̂m∗(., F̂0)‖ ≥ ‖r‖

4

)
.

Recall that r belongs to the Besov ball Bα
2,∞((0; 1), L), and that Dm∗ ≥ ln(n0). Hence, ‖r −

rm∗‖ ≤ CD−α
m∗ ≤ C(ln(n0))

−α. This quantity goes to 0 when n0 goes to +∞. Therefore,
C(ln(n0))

−α ≤ ‖r‖/4 for n0 large enough. Consequently,

(6) 1{
‖r−rm∗‖≥ ‖r‖

4

} = 0.

Thanks to (20) (Section 5.3.1, main article), we also have

P

(
‖rm∗ − r̂m∗(., F̂0)‖2 ≥

‖r‖2
16

)
≤ P

(
sup

t∈S(m∗)
(νn(t))

2 ≥ ‖r‖2
3× 16

)

+P

(
4Tm∗

1 ≥ ‖r‖2
3× 16

)
+ P

(
4Tm∗

2 ≥ ‖r‖2
3× 16

)
,

with νn defined by (19)(Section 5.3.1) and Tm∗
1 , Tm∗

2 by (13) (Section 5.2). We use (14) of
Section 5.2.2, and the mean-value theorem to obtain, Tm∗

2 ≤ 8π2D3
m∗‖Û0 − id‖2∞. Thus

P

(
4Tm∗

2 ≥ ‖r‖2
3× 16

)
≤ P

(∥∥∥Û0 − id
∥∥∥
2

∞
≥ ‖r‖2

192D3
m∗ × 8π2

)
,

≤ C exp

(
−n0

‖r‖2
768π2D3

m∗

)
.

by applying Proposition 5 (main article, Section 5.1.2). Since D3
m∗ ≤ n0/ ln

2(n0), we have

P

(
4Tm∗

2 ≥ ‖r‖2
3× 16

)
≤ C exp

(
− ‖r‖2
768π2

(ln(n0))
2

)
.(7)

The same arguments permit to bound the term in which Tm∗
1 is involved. We first note that

Tm∗
1 ≤ 32π2D3

m∗ supx∈R |F̂0(x)− F0(x)|2 and conclude with Proposition 5:

(8) P

(
4Tm∗

1 ≥ ‖r‖2
48

)
≤ C exp

(
− ‖r‖2
4× 768π2

(ln(n0))
2

)
.

We go back to the term involving the empirical process:

P

(
sup

t∈S(m∗)
(νn(t))

2 ≥ ‖r‖2
48

)
≤

Dm∗∑

j=1

P

(
ν2n(ϕj) ≥

‖r‖2
48Dm∗

)
.

Writing νn(ϕj) = (1/n)
∑n

i=1 Z
j
i − E[Zj

i ] with Zj
i = ϕj (F0(Xi)) (see (19) of the main article)

allows to apply the Bernstein Inequality (see for instance Proposition 2.9 and its comments in
Massart (2007)). We compute b =

√
Dm∗ , and v = n‖r‖∞. This leads, for u > 0

P

(
ν2n (ϕj) ≥

√
2‖r‖∞u+ u

1

3

√
Dm∗

)
≤ e−nu.
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Choosing u = a/D4
m∗ , for a constant a and using Dm∗ ≥ ln(n0), we can obtain

√
2‖r‖∞u +

u
√
Dm∗/3 ≤ ‖r‖2/48Dm∗ , for n0 large enough, and

(9)
Dm∗∑

j=1

P

(
ν2n (ϕj) ≥

‖r‖2
48Dm∗

)
≤ Dm∗ exp

(
−n a

D4
m∗

)
.

Putting together (6), (8), (7) and (9), we have proved

E

[
‖r̂m̃(., F̂0)− r‖21Λc

]
≤ 2

(
min(n, n0) + 2‖r‖2

){
C exp

(
−C (ln(n0))

2
)
+Dm∗ exp

(
− na

D4
m∗

)}
.

Recall that Dm∗ ≤ C(n/ ln(n))1/4. The last term of this upper-bound is thus negligible compared
to 1/n (if a is large enough). The other term has the order n0 exp(−C(ln(n0))

2), and are thus
smaller than C/n0. Finally,

E

[
‖r̂m̃(., F̂0)− r‖21Λc

]
≤ C

n0
+
C

n
.

✷

3.3. Proof of Theorem 4. The aim is to prove the following lower bound for the minimax risk
over Besov balls

(10) inf
r̂n,n0

sup
r∈Fα

E

[
‖r̂n,n0 − r‖2

]
≥ c

(
1

n
+

1

n0

)2α/(2α+1)

.

Denote by φn,n0 = (min(n, n0))
−2α/(2α+1) . Since there exists a constant c′ > 0 (depending on α)

such that (n−1 + n−1
0 )2α/(2α+1) ≤ c′φn,n0 , it is sufficient to prove Inequality (10) with the lower

bound φn,n0 . We separate two cases: n ≤ n0 and n > n0. The result comes down to the proof
of the two following inequalities:

inf
r̂n,n0∈En

sup
r∈Fα

E

[
‖r̂n,n0 − r‖2

]
≥ cφn,n0 = cn−2α/(2α+1),(11)

inf
r̂n,n0∈En0

sup
r∈Fα

E

[
‖r̂n,n0 − r‖2

]
≥ cφn,n0 = cn

−2α/(2α+1)
0 ,(12)

where En is the set of all possible estimators built with (Xi)i∈{1,...,n} and (X0,i0)i0∈{1,...,n0} when
n ≤ n0, and En0 the analogous set when n > n0.

The proof of each of the Inequalities (11) and (12) is based on the general reduction scheme
which can be found in Section 2.6 of Tsybakov (2009): the main idea is to reduce the class of
functions Fα to a finite well-chosen subset {ra, r1, . . . , rM}, M ≥ 2 such that

(i) rl ∈ Fα, for every l ∈ {a, 1, . . . ,M}.
(ii) ‖rl − rl′‖2 ≥ 2B0φn,n0 , for every l, l′ ∈ {a, 1, . . . ,M}, l 6= l′, for a constant B0 > 0.

(iii) For every l ∈ {1, . . . ,M}, P
(n,n0)
l is absolutely continuous with respect to P

(n,n0)
a and

there exists a constant κ ∈ (0; 1/8), such that

1

M

M∑

l=1

K
(
P

(n,n0)
l , P (n,n0)

a

)
≤ κ log(M),

with K(., .) the Kullback-Leibler divergence, P(n,n0)
l (resp. P

(n,n0)
a ) the probability dis-

tribution of a double sample (Xi)i∈{1,...,n} and (X0,i0)i0∈{1,...,n0} with relative density rl
(resp. ra).
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If we construct a set of functions which satisfies (i), (ii), and (iii) in each of the cases n ≤ n0 and
n > n0, Inequalities (11) and (12), and thus Theorem 4, are a consequence from Theorem 2.5 of
Tsybakov (2009).

3.3.1. Construction of the subset {ra, r1, . . . , rM}. It is in the spirit of Härdle et al. (1998) (Sec-
tion 10.4, Chapter 10). First let ra = 1(0;1). Let also ψ be a regular wavelet with compact
support, and ψj,k : x 7→ 2j/2ψ(2jx − k), for (j, k) ∈ Z

2. We define Rj the maximal subset
of Z such that supp ψj,k ⊂ [0; 1], k ∈ Rj and that supp ψj,k ∩ supp ψj,k′ = ∅ if k 6= k′. The
cardinal of Rj is |Rj | = c2j , for j an integer and c a constant, both to be chosen below. For all
ε = (εk)k∈Rj

∈ {0; 1}|Rj |, consider

rε = ra + χε, with χε = γn,n0

∑

k∈Rj

εkψj,k,

for γn,n0 a nonnegative number (decreasing when min(n, n0) goes to ∞) defined below.

Now, from the Varshamov-Gilbert bound (see Lemma 2.9 of Tsybakov 2009), there exist a
finite subset {ε(0), . . . , ε(M)} of {0; 1}|Rj |, such that ε(0) = (0, . . . , 0), and

(13) ρ(ε(l), ε(l
′)) :=

∑

k∈Rj

1
ε
(l)
k 6=ε

(l′)
k

≥ |Rj |
8

=
c2j

8
, and M ≥ 2|Rj |/8 = c22

j/8.

We set rl = rε(l) , l ∈ {1, . . . ,M} and remark that ra = rε(0) . In the sequel, we establish the
conditions to adjust j and γn,n0 such that (i), (ii), and (iii) are verified for the set {ra, rl, l ∈
{1, 2, . . . ,M}}. The computations are mainly the same to prove Inequalities (11) and (12),
except to check (iii). Thus, we distinguish the two cases only at the end, to conclude.

3.3.2. Conditions which guarantees (i). The funtion ra is a relative density with support (0; 1)
(density supported by (0; 1)), and ‖ra‖α,2 = ‖ra‖ = 1 < L. Moreover, to have rε(x) ≥ 0 for
x ∈ (0; 1), we must suppose ‖χε‖∞ ≤ 1, that is

(14) γn,n02
j/2 ≤ 1

‖ψ‖∞
.

Since
∫
R
ψ(x)dx = 0, we have

∫
R
χε(x)dx = 0, and thus,

∫
R
rε(x)dx = 1. Therefore, if (14) holds,

rε is also a relative density, for all ε ∈ {0; 1}|Rj |. According to Hochmuth (2002) (Theorem 3.5),
‖∑k∈Rj

εkψj,k‖α,2 ≤ 2jα‖∑k∈Rj
εkψj,k‖, if ψ smooth enough. Since ‖∑k∈Rj

εkψj,k‖ ≤ |Rj | =
2j , we deduce

‖rε‖α,2 ≤ ‖ra‖α,2 + ‖χε‖α,2 ≤ 1 + γn,n02
jα2j/2 ≤ L,

as soon as the following condition is satisfied:

(15) γn,n02
jα2j/2 ≤ L− 1.

3.3.3. Conditions which guarantees (ii). Let l, l′ ∈ {0, 1, . . . ,M}. We compute

‖rl − rl′‖2 = γ2n,n0

∥∥∥∥∥∥

∑

k∈Rj

(
ε
(l)
k − ε

(l′)
k

)
ψj,k

∥∥∥∥∥∥

2

= γ2n,n0

∑

k∈Rj

(
ε
(l)
k − ε

(l′)
k

)2
‖ψ‖2.

Thanks to (13), ‖rl − rl′‖2 = γ2n,n0
ρ(ε(l), ε(l

′))‖ψ‖2 ≥ 2jγ2n,n0
‖ψ‖2/8. The condition (ii) is thus

fulfilled as soon as

(16) γ2n,n0
2j ≥ 16B0

‖ψ‖2 φn,n0 .
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3.3.4. Conditions which guarantees (iii) and conclusion. For l ∈ {a, 1, . . . ,M}, denote by (X l
0,X

l)
a couple of independent random variables with relative density rl, probability distribution Pl =
PXl

0
⊗PXl , marginal density f l and f l0. If l = a, remark that the definition of ra requires fa0 = fa.

If ((X l
0,i0

)i0=1,...,n0 , (X
l
i)i=1,...,n) is a double sample distributed as X l

0 and X l, then its distribution

is P
(n,n0)
l = P

⊗n
Xl ⊗ P

⊗n0

Xl
0

. Let now l ∈ {1, . . . ,M} be fixed. The following decomposition holds

K
(
P
(n,n0)
l ,P(n,n0)

a

)
= nK (PXl ,PXa) + n0K

(
PXl

0
,PXa

0

)
.(17)

To satisfy (iii), we check that it is possible to obtain K(P
(n,n0)
l ,P

(n,n0)
a ) ≤ 2jκ log(2)/8. This is

sufficient since log(M) ≥ 2j log(2)/8 (see (13)). We have now to distinguish the two cases n ≤ n0
and n > n0 to end the proof: we choose the density functions of Xa

0 , Xa, X l
0, X

l to only keep
the term depending on n in (17) when min(n, n0) = n, and to only keep the term depending on
n0 in the other case.
End of the proof of Inequality (12). Assume n ≤ n0, such that min(n, n0) = n. We set fa0 =
fa = f l0 = 1(0;1), and f l = rl. These choices guarantee that (Xp

0 ,X
p) has the relative density rp,

for p = a and p = l, and, using (17), lead to

K
(
P
(n,n0)
l ,P(n,n0)

a

)
= n

∫

R

log

(
f l

fa
(x)

)
f l(x)dx = n

∫

R

log(rl(x))rl(x)dx

= n

∫

R

log (1 + χε(l)(x)) (1 + χε(l)(x)) dx.

Noting that log(1 + u) ≤ u for every u > −1, and using
∫
R
χε(l)(x)dx = 0, we obtain

K
(
P
(n,n0)
l ,P(n,n0)

a

)
≤ n

∫

R

χ2
ε(l)

(x)dx ≤ nγ2n,n0
‖ψ‖22j .

Thus to fulfill (iii) it is sufficient to have

(18) nγ2n,n0
‖ψ‖2 ≤ κ

log(2)

8
.

Now the parameters γn,n0 and 2j are chosen so that the conditions (14), (15), (16) and (18) are
satisfied. We set, for two constants b, c0 > 0,

(19) γn,n0 =

√
b

min(n, n0)
and 2j = c0 (min(n, n0))

1/(2α+1) .

With the choices b = log(2)/(128‖ψ‖2), c0 = min(((L−1)/
√
b)2/(2α+1), (‖ψ‖∞/

√
b)−2), we check

that the three conditions are verified for any B0 < bc0‖ψ‖2/16, and for κ = 1/16. This concludes
the proof of Inequality (11).
End of the proof of Inequality (11). Assume n > n0. The choices are now fa0 = fa = f l = rl,
and f l0 = 1(0;1), which also lead to the relative density rp for (Xp

0 ,X
p), p = a and p = l. Here,

K
(
P
(n,n0)
l ,P(n,n0)

a

)
= n0

∫

R

log

(
f l0
fa0

(x)

)
f l0(x)dx = n0

∫

R

log

(
1

rl(x)

)
dx,

We now notice that log(1 + u) ≥ u− u2/2, for u ≥ −1/2. We can assume that χε(l)(x) ≥ −1/2
(even if it means reducing the choice of the constant involved in γn,n0 , see below), and the same
computations as in the case n ≤ n0 permits to obtain

K
(
P
(n,n0)
l ,P(n,n0)

a

)
≤ n0γ

2
n,n0

‖ψ‖22j ,
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and the new condition

(20) n0γ
2
n,n0

‖ψ‖2 ≤ κ
log(2)

8
.

The parameters (19) are still suitable to guarantee (15), (16) and (20). In this case, the constant
b need to be small enough so that χε(l)(x) ≥ −1/2, which is possible. We conclude by checking
the three conditions, which leads to Inequality (12), and ends the proof of Theorem 4.

✷
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