Does deblurring improve geometrical hyperspectral unmixing? - Archive ouverte HAL
Article Dans Une Revue IEEE Transactions on Image Processing Année : 2014

Does deblurring improve geometrical hyperspectral unmixing?

Résumé

In this paper, we consider hyperspectral unmixing problems where the observed images are blurred during the acquisition process, \emph{e.g.} in microscopy and spectroscopy. We derive a joint observation and mixing model and show how it affects endmember identifiability within the geometrical unmixing framework. An analysis of the model reveals that nonnegative blurring results in a contraction of both the minimum-volume enclosing and maximum-volume enclosed simplex. We demonstrate this contraction property in the case of a spectrally-invariant point-spread function. The benefit of prior deconvolution on the accuracy of the restored sources and abundances is illustrated using simulated and real Raman spectroscopic data.
Fichier principal
Vignette du fichier
paper.pdf (422.42 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00933013 , version 1 (30-01-2014)

Identifiants

Citer

Simon Henrot, Charles Soussen, Manuel Dossot, David Brie. Does deblurring improve geometrical hyperspectral unmixing?. IEEE Transactions on Image Processing, 2014, 23 (3), pp.1169-1180. ⟨10.1109/TIP.2014.2300822⟩. ⟨hal-00933013⟩
198 Consultations
414 Téléchargements

Altmetric

Partager

More