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Does deblurring improve geometrical

hyperspectral unmixing?
Simon Henrot, Charles Soussen,Member, IEEE, Manuel Dossot, and David Brie,Member,

IEEE

Abstract

In this paper, we consider hyperspectral unmixing problemswhere the observed images are blurred

during the acquisition process,e.g. in microscopy and spectroscopy. We derive a joint observation

and mixing model and show how it affects endmember identifiability within the geometrical unmixing

framework. An analysis of the model reveals that nonnegative blurring results in a contraction of both the

minimum-volume enclosing and maximum-volume enclosed simplex. We demonstrate this contraction

property in the case of a spectrally-invariant point-spread function. The benefit of prior deconvolution

on the accuracy of the restored sources and abundances is illustrated using simulated and real Raman

spectroscopic data.

Index Terms

Hyperspectral unmixing, Minimum-volume simplex, Deconvolution

I. INTRODUCTION

Multispectral imaging refers to the acquisition of two-dimensional (2D) spatial images at different

wavelengths, yielding one spectral vector per pixel of the image. Hyperspectral imaging takes this idea

one step further by improving the spectral resolution to hundreds or thousands of overlapping spectral

bands. Hyperspectral data may then be viewed as a collectionof highly resolved spectra. In many

applications, the image contains a small number of pure materials - termedendmembers- whose spectral
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signatures are mixed in each pixel because of limited spatial resolution. Spectral unmixing usually refers

to the estimation of endmembers and their fractional contribution to each pixel, namedabundances.

Many unmixing methods in the literature can be categorized as belonging to either a geometrical, a

statistical (Bayesian) or a sparse regression framework [4]. In the former approach, each spectral vector

belongs to a simplex whose vertices are the endmembers we seek [9]. Some algorithms assume that

there exists at least onepure pixel (PP) per endmember and exploit this property by identifyingthe

endmembers to the “purest” pixels in the hyperspectral scene. When thepure pixel hypothesisdoes not

hold, the geometrical approach to unmixing then consists infitting the Minimum Volume Simplex(MVS)

to the data using one of many MV algorithms. However, highly mixed data are beyond the reach of

geometrical algorithms because spectral signatures are located near the center of the true endmember

simplex. One could then resort to statistical or sparse methods to unmix the data set. In this paper, we

focus instead on analyzing and alleviating the effects of hyperspectral image blurring, which will be

shown to possibly cause highly mixed data.

Hyperspectral images are usually degraded by the observation process, typically including blurring

and corruption by noise. Data acquired by spectro-imagers dedicated to geoscience, remote sensing

or planetology, result from a physics-based inversion pipeline ensuring that these images are free of

blur. However, in other domains, the acquisition process does not include a deblurring step, resulting in

blurry hyperspectral images. For instance, microscopy [25], Raman spectroscopy [10] or ground-based

astrophysical [5], [22] images are blurred by diffraction through the objective aperture. We consider such

hyperspectral images in this paper. Mathematically, each observed image plane is obtained as the two-

dimensional convolution of the original image and the channel linear shift-invariant blur orPoint-Spread

Function (PSF). If the size of the PSF is less than that of an image pixel, the blur does not alter the

spatial resolution of the data. However, if the PSF support extends beyond a pixel, neighboring pixels

are combined in the observed data, resulting in additional mixing.

The latter case arises whenever one aims at obtaining a fine spatial resolution, e.g. in super-resolution

reconstruction [1]. In this framework, some scenes that could a priori be geometrically unmixed may lose

this property because of the blur. The operation ofdeconvolutionwhich inverts the observation process

may then restore the stack so that low computational complexity geometrical methods qualify to unmix it.

In addition, deconvolution algorithms also provide the additional benefit of restoring images with higher

signal-to-noise ratios (SNRs).

The ideal approach to account for these two physical phenomena would be to jointly deconvolve

and unmix the data. Let us mention [26] where the authors perform joint deconvolution and abundance
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estimation. They assume that endmembers belong to a large dictionary and the abundance estimation

is formulated as a sparse regression problem. However, to the best of our knowledge, no algorithms

have been designed to perform joint deconvolution andblind unmixing1 of the data. Nevertheless, many

off-the-shelf algorithms are available to perform deconvolution and unmixing separately. We propose to

show in this paper that the sequential procedure of (deconvolution/unmixing) yield better results than a

(unmixing/deconvolution) strategy.

To this end, we will study how blurring may affect the resultsof geometrical unmixing methods and

assess whether deblurring hyperspectral images before unmixing them yields quantitative improvements.

The remainder of the paper is organized as follows. Section II presents the linear mixing model and

recalls its associated geometrical framework ; we also discuss identifiability issues by the geometrical

unmixing approach. In section III, we factor in the general observation model and present experimental

results on synthetic data to evaluate the gain of a deconvolution step before applying a spectral unmixing

algorithm. Section IV focuses on the specific case where the PSF is invariant across the spectral channels.

Finally, we present experimental results on real data in section V and we conclude in section VI.

II. H YPERSPECTRAL GEOMETRICAL UNMIXING FRAMEWORK

In this section, we introduce concepts and notations used throughout the rest of the paper. Most of

the results given below are not new and can be found elsewherein the literature: see [4] for a thorough

review of hyperspectral unmixing and [6] for an introduction to convex geometry applied to endmember

extraction.

A. Linear mixing model

Consider an hyperspectral image measuring radiance onL different spectral bands (channels) andN

pixels. We gather the data in aL×N matrix X and use the following notations:

1) xℓ is theℓ-th row of x, that is the 2D image at channelℓ after lexicographical ordering into a row

vector of lengthN ;

2) xn is then-th column ofx, i.e. theL× 1 spectrum of then-th pixel (also termed spectral vector

or pixel vector).

Each spectral vector in the image is a linear combination of an known numberP of endmembers

{s1, . . . , sP }. When unknown,P can be obtained by some model order estimation method such as

1Here, blind unmixing refers to the joint estimation of endmembers and abundances.
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virtual dimensionality[7]. Ignoring noise for now, the linear mixing model (LMM) writes

X = SA

where thepth column ofL×P source matrixS indexes endmembersp and thenth columnan of P ×N

abundance matrixA contains the fractional abundance coefficients forxn:

xn = San =

P
∑

p=1

Ap,nsp. (1)

The LMM is generally based on the following assumptions [4]:

i) the number of endmembersP is much smaller than the number of bandsL, that isP ≪ L;

ii) matrix S is of full column rank,i.e. endmembers{s1, . . . , sP } are linearly independent;

iii) Abundance Nonnegativity Constraint(ANC) : Ap,n ≥ 0 for all p andn;

iv) Abundance Sum Constraint(ASC) :
∑P

p=1
Ap,n = 1 for all n.

Assumptions (i) and (ii) seem very reasonable in hyperspectral imaging since many bands are collected

and the image is made up of a few distinct materials. Assumptions (iii) and (iv) come from the physical

interpretation of abundance coefficientAp,n as the fractional spatial area occupied by thepth endmember

in the nth pixel.

To model illumination variability due to surface topography [21], equation (1) sometimes writesxn =

γnSan where parameterγn is a scale factor for each pixel in the hyperspectral scene. This phenomenon

can be accounted for in model (1) by simply rejecting hypothesis (iv). The geometrical consequences of

this choice are detailed below.

B. Dimension reduction and affine projection

From equation (1) and assumptions (i) and (ii), it is immediate that pixel vectors lie in aP -dimensional

vector subspace ofRL. Suppose the subspace orthonormal basisE = [e1, . . . , eP ] has been inferred from

the data, e.g. by the HySime algorithm [3], then then-th dimension-reduced pixel is given by

x̂n = ETxn ∈ R
P . (2)

From equation (2) and assumption (iii),P -dimensional pixel vectors are enclosed in the convex cone

spanned by dimension-reduced endmembers{ŝ1, . . . , ŝP } [17] (see figure 1):

{x̂|x̂ =

P
∑

p=1

θpsp, θp > 0, p = 1 . . . P}. (3)
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ŝ1

ŝ2

ŝ3

x̂n

x̊n

Fig. 1. Illustration in dimensionP = 3 of the convex cone spanned by dimension-reduced endmembers{ŝp, p = 1 . . . P}

enclosing dimension-reduced pixelŝxn’s. x̊n is obtained by perspective projection ofx̂n on the affine plane supported by

{ŝp, p = 1 . . . P}.

In order to satisfy hypothesis (iv), theP -dimensional points are then projected onto a(P−1)-dimensional

affine plane (see figure 1). The choice of a particular affine plane is arbitrary and may be viewed as

imposing the norm of the supporting endmembers.

Most algorithms use either an orthogonal projection [6] or the perspective projection [4] onto the

(P − 1)-dimensional affine plane : the choice of one method or another is related to the SNR, see [21].

For example, the perspective projection consists in scaling pixel vectors

x̊n =
x̂n

x̂T
nu

(4)

to project them onto the hyperplane defined byv̂Tu = 1 for every vectorv̂ ∈ R
P , whereu ∈ R

P
+ is

chosen beforehand such thatx̂T
nu > 0 for all n. From equations (1), (2) and (4), then-th projected pixel

vector rewrites

x̊n =

P
∑

p=1

αp,n̊sp (5)

where coefficientsαp,n are given by

αp,n = Ap,n

ŝTp u

x̂T
nu

=
Ap,nŝ

T
p u

∑

q Aq,nŝ
T
q u

. (6)

It is easy to see that theαp,n’s satisfy the following properties:

1) αp,n ≥ 0 for all p andn, under the ANC;
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2)
∑

p αp,n = 1 for all n.

It follows that each projected pixel vector̊xn is a convex combination of the projected endmembers

{̊sp, p = 1 . . . P}. Hence, projected pixel vectors belong to the convex setS:

S = {̊x|̊x =

P
∑

p=1

θp̊sp|θp ≥ 0, p = 1 . . . P,

P
∑

p=1

θp = 1}. (7)

By definition,S is the simplex whose vertices are the projected endmembers{̊s1, . . . , s̊P }.

C. Minimum Volume Simplex (MVS)

Most geometrical unmixing algorithms are based on the key idea introduced by Craig [9] that the

minimum-volume simplex (MVS) enclosing all the pixel vectors identifies withS and thus the end-

members we seek can be extracted as the vertices of the MVS. The MV constraint allows to regularize

the ill-posed nature of the nonnegative source separation problem [20]. Alternatively, one can look for

the maximum-volume simplex inscribed in the dataset, provided the image contains pure pixels (PP).

Recovering both simplices can be addressed as a combinatorial problem but is too complex to handle

high dimensional data [12], [27]. Simple and computationally efficient approaches were proposed e.g.

[24], [21] in the MVS case and [9], [8], [6] in the PP case, among many others.

(a) (b) (c)

Fig. 2. 2D examples of triangles enclosing the data forP = 3 endmembers. The true unknown simplexS is represented with

a straight line while the other candidate triangle is plotted with a dotted line. Data points are represented as hollow circles and

the vertices of the simplices are filled circles. (a): Statement (1) is true, i.e.S is the MVS. (b): both triangles are MVS’s for

this data configuration. (c): the dotted-lined triangle hasa smaller volume thanS and thus is the MVS.

We point out that unlike in the PP case, the MVS and thetrue simplex S whose vertices are the

endmembers may be different simplices. Figure 2 illustrates the distinction between the MVS andS in
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the simple case whereP = 3, yielding a 2D affine plane. In what follows, we discuss the problem of

endmember identifiability using the MVS approach. Craig’s statement can be rewritten in the following

way:

Statement 1. the MVS identifies withS.

The first problem with the statement is that there might existmore than one MVS: see figure 2b. This

case is not likely to arise in practice if enough data points have been collected so that there exists data

points near the vertices ofS.

Assuming there exists only one MVS, the following result canbe found in the literature [4]:

Sufficient condition 1. If there is at least one data point on each vertex ofS, then statement 1 is true.

This sufficient condition (SC) is known as thepure pixel condition. ForP = 3, we make the following

statement whose proof is given in appendix A (see figure 2c):

Sufficient condition 2. If there are at least two data points per facet ofS whose distance with the closest

vertex is no greater than a third of the corresponding facet’s length, then statement 1 is true.

SC 2 is weaker than SC 1. We note that a recent paper establishes necessary and sufficient conditions

for the identifiability of endmembers by Craig’s criterion in the 3-endmember case, see [18]. Formulating

such a statement for higher dimensions (that is, for more than three endmembers) is difficult and out of

the scope of this paper. Rather, we stress that endmembers are more likely to be accurately identified by

a MVS algorithm if there are pixel vectors near the vicinity of the vertices ofS in the data. Obviously,

if the data is highly mixed, the MVS will be enclosed inS and identifiability conditions will not be

satisfied. Such a situation can arise because of two major reasons:

1) the abundance distributions themselves;

2) additional mixing due to the imaging system, as we will demonstrate in the next section.

In the latter case, this undesirable contribution can be removed by image restoration methods, thus

improving endmember identifiability conditions.

III. E FFECT OF THE IMAGING PROCESS

A. Blurring of the linear mixture

In this section we now account for the fact that the image is degraded during the acquisition process.

Under the common linear blur assumption, the 2D imageyℓ observed at a given channelℓ is obtained
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as the 2D convolution product of the true image and the channel point-spread functionHℓ:

yℓ = xℓHℓ (8)

where theN×N observation matrixHℓ is a convolution matrix corresponding toHℓ. For instance, when

the blur is space-invariant,(Hℓ)T is a block-Toeplitz matrix where each block is Toeplitz [14]2. Each

entry of the observed data matrixY is given by

Yℓ,k =

N
∑

n=1

Xℓ,nH
ℓ
n,k. (9)

Using equations (1) and (9), the overall model combining noise, observation blurring and linear mixing

of endmembers writes

Yℓ,k =

N
∑

n=1

P
∑

p=1

Sℓ,pAp,nH
ℓ
n,k +Wℓ,k (10)

whereW is the noise term and model (10) assumes that the SNR is high enough for the noise to be

additive and i.i.d. Gaussian. We observe that the blurred data do not satisfy the LMM since the mixing

coefficientsAp,nH
ℓ
n,k depend on the channel indexℓ. Thus, even in the absence of noise,the yk ’s do

not necessarily belong toS anymore.

B. Pixel trajectories

Since the abundances vary with the channel index, it is no longer possible to use barycentric coordinates

to represent a pixel vector in the simplex formed by the endmembers [15]. To give some insight into the

understanding of the effect of the channel dependent blur onthe linear mixture, we propose to use the

representation of figure 4. The endmembers correspond to thevertices of the simplex. Note that in this

figure the simplices locations are arbitrarily fixed to(0, 0), (0, 1) and(1/2,
√
3/2) resulting in an isoceles

triangle. As the mixing coefficients are depending on the channel index, a mixed pixel can no longer be

represented as a single point. For each channel, we have different mixing coefficients. We rather represent

a channel dependent mixed pixel by a trajectory where each point of the trajectory corresponds to the

barycentric coordinates at a particular channel.

Figure 3 displays a few pixel trajectories for a Gaussian PSFwhose width linearly increases with the

channel index3. Interestingly, this representation provides spatial information about the pixel at hand. For

2The transpose comes from the fact thatx
ℓ andyℓ are row vectors.

3We restrict our analysis to the case of PSFs whose width increases with the channel index (i.e. wavelength) because this is

the relevant case of conventional optical systems.
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Fig. 3. Examples of trajectories of a few pixel vectors.

instance, a trajectory that goes from a vertex to another mayindicate that the pixel is located in the

boundary of two regions, each corresponding to a particularendmember; a trajectory pointing towards

the center of the simplex corresponds to a highly mixed pixel.

As a consequence, even if applying a linear unmixing algorithm directly to the data is feasible, the

resulting endmembers and abundances are literally unmeaningful. We rather propose to perform deblurring

prior to the unmixing step and numerical experiments are conducted in the next section to assess the

gain of doing so.

To conclude this section, we note that blurring caused by a nonnegative PSF results in acontraction

propertywhose extent increases with the PSF width. We will come back to that point in section IV.

C. Experimental results

To quantitatively assess the effects of deblurring on hyperspectral unmixing, we use synthetic data

so that the extracted endmembers may be compared to their true counterparts. First, we selectP = 3

true independent endmembers from the United States Geological Survey (USGS) spectral library4. Each

endmember signature is sampled on 224 spectral bands. We then synthesize a set ofP random two-

dimensional (2D)30× 30 abundance maps modeled as a mixture of 2D Gaussian functionswith random

locations and widths, under the constraint that the abundances for each pixel sum to one. The true data

stack is then computed using equation (1).

4Available online from: http://speclab.cr.usgs.gov/spectral-lib.html
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Fig. 4. Selected endmembers.
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Fig. 5. Examples of abundance maps generated as spatial mixtures of 2D Gaussian distributions with random means and

variances.

Image degradation is simulated by convolving each channel with a 2D Gaussian PSF whose width

varies linearly with the channel index, from one pixel to theentire field of view. The approximation of

physical PSFs by 2D Gaussian functions is actually reasonable for numerous optical systems, including

fluorescence microscopy [25], Raman microscopy [10] and atmospheric turbulence [26]. We then add

i.i.d. Gaussian noise at a specific SNR value. We wish to evaluate the effect of deconvolution for different

noise levels. Hence, we run three separate experiments withrespective SNRs of 5dB, 25dB and 50dB.

The rationale for these values is that at 5dB, the role of the deconvolution algorithm is to both denoise

and deblur the data, while at 50 dB its main role will consist in deblurring. A SNR of 25dB is viewed

as a more standard situation.

Image deconvolution is achieved using the algorithm described in [14] which accounts for spectral

and spatial smoothness and non-negativity of multispectral and hyperspectral data. The rationale for this

choice is that the priors of the methods are well adapted to the data and its low complexity allows
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Fig. 6. Original data simplex (with no blur and noise) obtained by Principal Component Analysis and orthogonal projection.

Pixel vectors are denoted by the symbol ’+’, endmembers by circles.

a computationally efficient simulation. This algorithm requires tuning two regularization parameters,

weighting respectively a spatial and spectral smoothness prior, denoted byµ andν. For each situation,

we run the algorithm by setting these parameters on a10×10 logarithmic grid, with values ranging from

10−4 to 102. Since we only evaluate hyperparameters on a finite grid, deconvolution of the data may not

be optimal. However, the deconvolved image is always closerto the true image in the mean square error

sense.

For each experiment, spectral unmixing is carried out on both the degraded data set and the deconvolved

data set. Endmember extraction is performed using three widespread geometrical-based algorithms :

Vertex Component Analysis(VCA) [21], Minimum-Volume Enclosing Simplex(MVES) [6] andSimplex

Identification via variable Splitting and Augmented Lagrangian (SISAL) [2], using MATLAB code

published by the authors. Abundance estimation is automatically carried out with MVES and we use Fully

Constrained Least Squares inversion (FCLS) [13] to computeabundances for VCA and SISAL. While

VCA is based on the pure pixel hypothesis, both MVES and SISALare minimum-volume algorithms,

hence the choice of these three methods allows the scrutiny of a wide range of situations. The goal

here is to evaluate the increase of performance brought by a deconvolution step for all algorithms, rather

than comparing the results of one algorithm to another, which would not be fair as they depend on the
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SNR Endmember extraction SAD Abundance estimation MSE

VCA MVES SISAL VCA MVES SISAL

Data Raw Restored Raw Restored Raw Restored Raw Restored Raw Restored Raw Restored

5 0.8840 0.4344 2.2361 0.5206 0.8439 0.4936 0.0032 0.0029 0.0062 0.0031 0.0035 0.0027

25 0.8951 0.2780 0.6640 0.83 0.7856 0.4385 0.0046 0.0085 0.0037 0.0041 0.0035 0.0027

50 0.8926 0.2915 3.0823 0.4330 0.8527 0.4176 0.0046 0.0082 0.0062 0.0018 0.0035 0.0017

TABLE I

ENDMEMBER EXTRACTION AND ABUNDANCE ESTIMATION ERRORS FOR A VARIANT PSF.

situation at hand.

We choose the following performance metrics:

1) thespectral angle distance(SAD) between the true and extracted endmembers:

SADp = cos−1

(

sTp ŝp

‖sp‖22 ‖ŝp‖22

)

, p = 1 . . . P. (11)

The total SAD is given by SAD=
∑

p SADp;

2) TheMean Square Error(MSE) between the true and estimated abundances, given by

MSE= ‖Â−A‖2F . (12)

We then store the unmixing results on the raw data for each point of the hyperparameter grid and

select the point which corresponds to the best extraction SAD. This choice is arbitrary : depending

on the application, it may be better to select the deconvolution result yielding the smallest abundance

estimation MSE. In either case, we point out that both these quantities could provide interesting criteria

for hyperparameter selection.

Table I gives the various performances obtained for endmember extraction and abundance estimation

by VCA, MVES and SISAL with and without a prior deconvolutionstep. Deconvolving the image prior

to image unmixing improves the results for all algorithms.

IV. CASE OF PSFINVARIANCE

In this section, we focus on the specific case where the PSF is invariant across channels. This case is

actually important in practice and arises in many imaging situations, such as Raman microscopy.
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Fig. 7. Left : original projected pixel vectors, right : degraded projected pixel vectors. The data cloud is shrinked by the

observation process and pure pixels become mixed in the observed data.

A. Bilinear model

In the specific case where the PSF is invariant across channels, the model reduces to the bilinear

equationY = SAH+W where each dimension-reduced pixel is given by

ŷk =

N
∑

n=1

P
∑

p=1

Ap,nHn,kŝp + ŵk. (13)

The k-th projected pixel vector̊yk = ŷk/ŷ
T
k u is then a noisy bilinear combination of the projected

endmembers{̊sp = ŝp/ŝ
T
p u, p = 1 . . . P}:

ẙk =

N
∑

n=1

P
∑

p=1

α′

p,n,k̊sp +
ŵT

k u

ŷT
k
u
ẘk. (14)

where coefficientsα′

p,n,k are given by

α′

p,n,k = Ap,nHn,k

ŝTp u

ŷT
k u

=
Ap,nHn,kŝ

T
p u

∑

q,mAq,mHm,kŝ
T
q u

. (15)

From equation (15), we can see that coefficientsα′

p,n,k satisfy the nonnegativity and sum-to-one properties:

1) α′

p,n,k ≥ 0 for all p, n andk under the ANC and knowing that PSFs entries are nonnegative;

2)
∑

p,n α
′

p,n,k = 1 for all k = 1 . . . N .

Thus, in the case where the PSF is invariant across channels and in the absence of noise, the observed

pixel vectors{ẙk, k = 1 . . . N} remain in the simplexS (defined in equation (7)). However, the additional

mixing introduced by the PSF may hinder spectral unmixing ina different way, as shown in section IV-B.
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B. MVS contraction

How does the observation process affect the distribution ofpixel vectors inside the simplex? The

answer to the question obviously depends on the nature of thePSF. Since the entries ofH are known to

be nonnegative, the blurring process tends to average neighboring pixel intensities. Hence:

1) suppose the data include a pure pixelxn: then x̊n locates on a vertex ofS. If a mixed pixelxm

is in the spatial neighborhood ofxn, the observedyn will appear mixed in the observed image,

which will relocateẙn towards the inside ofS;

2) similarly, if a sourcesp is not present in a given pixelxn but appears in its neighborhood, the

observed pixel vectoryn will include a contribution fromsp and ẙn will move towards the inside

of S.

This phenomenon inclines observed spectral vectors to cluster towards the center ofS. As a graphical

illustration, consider for a simple multispectral image with 3× 3 = 9 pixels and 3 spectral bands, each

blurred with a3× 3 averaging kernel:

H =











1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9











. (16)

Suppose our data set satisfies the pure pixel hypothesis, andalso includes some mixed pixels, yielding

the following 3× 9 abundance matrix:

A =











1 1/2 0 1/2 1/3 1/6 0 1/6 0

0 0 0 1/2 1/3 1/6 1 2/3 1/2

0 1/2 1 0 1/3 2/3 0 1/6 1/2











. (17)

The resulting simplices for the original and degraded data are given in figure 7. The data cloud clearly

suffers a shrinkage inside ofS from the observation process. Let us now formally state thiscontraction

property, using the notion ofconvex hull. The convex hull of the data should not be confused with the

MVS which necessarily hasP vertices; in contrast, the convex hull has up toN vertices which all are

pixels.

Proposition 1. Let S∗

x
denote the MVS enclosing the true dataX, S∗

y
the one enclosing the blurred data

Y and V denote the volume. If the PSF is nonnegative, then the convexhull of Y̊ is enclosed in the

convex hull ofX̊ and

V(S∗

y
) 6 V(S∗

x
) (18)
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Proof: Assume the PSF coefficients are nonnegative. Then each observed pixel ŷk is a linear

nonnegative combination of the original pixels{x̂n, n = 1 . . . N} (or possibly a subset of̂X depending

on the support of the PSF). Henceŷk belongs to the conical hull of̂X for eachk. It follows that the

convex hull of the projected observed pixel vectors{ẙk, k = 1 . . . N} is included in the convex hull of

{̊xn, n = 1 . . . N}.

ThereforeS∗

x
encloses all pixels{ẙk, k = 1 . . . N}. SinceS∗

y
is the MVS enclosing{ẙk, k = 1 . . . N},

we necessarily have

V(S∗

y
) 6 V(S∗

x
) (19)

(Note however that while the volume ofS∗

y
is smaller,S∗

y
is not necessarily included inS∗

x
.)

In the case of Gaussian PSFs, Proposition 1 has an interesting consequence for the variant PSF case.

Proposition 2. Consider two symmetric separable 2D Gaussian PSFsH1 and H2 of respective width

satisfyingσ1 > σ2. Let {ẙ1, ẙ2} denote the respective observed projected pixels and{S∗

1 ,S∗

2} the

respective MVSs. Then the convex hull ofẙ1 is included in the convex hull of̊y2 andV(S∗

1 ) 6 V(S∗

2 ).

Proof: The PSFs being separable,H1 may be written as the 2D convolution product ofH2 and a

Gaussian kernel of standard deviation
√

σ2
1
− σ2

2
. Since all kernels are nonnegative, Proposition 2 is a

straightforward application of Proposition 1.

Getting back to the idea of pixel trajectories outlined in section (III-B), when the PSF width increases

with the channel, proposition (2) allows us to deduce that the convex hull of points at a given channelℓ

is included in the convex hull of points at channelℓ− 1. We now resume the discussion of the invariant

PSF case.

Hence, we know from section II-C that directly applying a geometrical unmixing algorithm to the

observed data may produce incorrect endmembers, and thus the subsequent estimation of abundances will

also be biased. In the next section, we study the improvementof unmixing performance after applying

a deconvolution algorithm to the data.

C. Experimental results

Here, we consider the effect of the standard deviation of thePSF on our performance metric, using the

same synthetic data and experimental protocol as in sectionIII-C. For a fixed SNR value, we consider

each kernel size from one pixel (σ = 0.1) to the the entire field of view of the image (σ = 5). For each

value ofσ, we run the deconvolution algorithm for spatial and spectral regularization parameters on the

previously used grid. We display our experimental results on figure 9 and note a few key points:
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σ1

σ2

σL

s1 s2

s3

Fig. 8. Illustration of the nesting property of convex hullsfrom channel to channel (variant PSF case).

1) As expected, the performance of both endmember extraction and abundance estimation are better

after a deconvolution step, the margin between the two results tending to increase withσ except

for a few localized values ofσ. The reason why the unmixing algorithms perform slightly better

on the raw data for these values certainly owes to the limitedtuning of hyperparameters in the

deconvolution step.

2) All unmixing results show a decrease in performance, bothin terms of endmember extraction

(increase of SAD) and abundance estimation (increase of MSE) whenσ increases. Owing to the

random initializations of the unmixing algorithms, the error curves are not purely monotonic. The

decrease in performance seems very intuitive since the severity of the observed data degradation

increases withσ.

3) The parameter search on the deconvolution step allows to stabilize the solution. Of course, the

simulation makes use of ground truth while computing the best parameter values. In order to

perform tuning in real imaging situations, one could use a library of spectral signatures and seek

the parameters minimizing the spectral angle distance between the extracted endmembers and the

corresponding ground truth endmembers that are a priori known to be present in the image.

Figure 10 is a geometrical view of the results of figure 9 illustrating the distance between the unknown

and recovered sources, both on the raw and restored data for three values of the PSF spreadσ. The

results clearly show the MVS contraction caused by the blurring process and the reverse effect of the

deconvolution step.
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Let us sum up our experimental results in the invariant PSF case. A prior deconvolution step increases

the performance of endmember extraction and abundance estimation for a vast majority ofσ values. Of

course, the wide variety of situations (abundance maps, endmembers, PSF spread, SNR, . . . ) make general

statements difficult to quantify. However, in all our experiments, the unmixing results after deconvolution

were always at least comparable and most of the time much better than the results obtained on the raw

data.

V. EXPERIMENTAL RESULTS ON REAL DATA

In this section, we evaluate the gain of deconvolution on unmixing real Raman spectroscopy data. Our

hyperspectral data set comprises images of size98 × 131 pixels, each pixel being100 nm× 100 nm,

acquired on 337 bands ranging from800 cm−1 to 1200 cm−1. The scene of interest consists in a grain

of sodium acetate(CH3COONa) covered withsodium carbonate(Na2CO3) laying on asilicon layer

(Si). Part of the sodium carbonate reacts with water vapor toyield hydrated sodium carbonate. These

four chemical compounds are the endmembers we seek. A thorough inspection of the data reveals that

the silicon compound contributes to all pixels of the image.The extraction of these endmembers is a

challenging problem, since silicon is the only compound forwhich the pure pixel assumption is fulfilled.

Because of the inherent high mixing of the data, even MV methods are not supposed to produce good

results on this data set.

Given the limited spectral range, the PSF is considered to beinvariant across channels. It is modeled

as a 2D Gaussian function [10] with an experimentally measured full-width at half maximum of 300

nm. We apply our deconvolution algorithm to the data by setting regularization parameters through a

trial-and-error process toµ = 20 andν = 5.

VCA and FCLS are carried out on both the raw data matrix and itsrestored counterpart ; the results are

displayed in figure 11. The first extracted endmember corresponds to the silicon layer, which presents a

broad band at910−960 cm−1 due to the 2TO harmonic phonon mode of bulk silicon. The deconvolution

step allows to denoise its abundance map and more importantly, uncovers structure that was distributed

throughout other abundance maps. The second endmember is sodium acetate, with a peak at930 cm−1

due to the intense C-C stretching mode of the acetate molecule [23]. It is well isolated by VCA (both for

the raw and restored data), perhaps because the width of the grain make this endmember almost uniquely

contribute to some pixels. However, the third and fourth endmembers present mixed spectral contributions

from all compounds : both forms of sodium carbonate, hydrated and non hydrated (respective peaks

at 1060 and1080 cm−1) as well as silicon and sodium acetate. The deconvolution step again reveals

January 30, 2014 DRAFT



18

structure in the fourth endmember that was not displayed in the case of raw data.

Further analysis of the spectra also show bands at840 cm−1 and1004 cm−1, which reveals that the

data have accidentally been polluted with sodium benzoate (NaC7H5O2) [11]. Because this compound is

associated with the sodium carbonate phase, experiments with 5 endmembers do not yield improvements,

both compounds being mixed in a unique endmember.

Both MVES and SISAL extract endmembers with negative peaks from this data set, rending them

physically unmeaningful, so we do not include results from these algorithms. However, we employ another

minimum-volume algorithm : theNonnegative Matrix Factorization(NMF) with volume constraints

(NMF-vol) on the inferred simplex [19]. The algorithm operates on both the raw data (where negative

pixels have been clipped to zero since the algorithm imposesa nonnegative data matrix) and restored

data. Due to computation times, it was not possible to include this method in our previous simulations on

synthetic data; here we set10000 as the maximum number of iterations. The resulting abundance maps and

endmembers are also given in figure 11. The spectral shapes ofendmembers extracted from the raw data

appear noisier, a problem solved by the deconvolution step.The sodium acetate endmember displays

more undesirable contribution from the silicon compound. However, the algorithm is able to separate

the sodium carbonate compound (third endmember, characterized by the peak at1080 cm−1) from the

hydrated sodium carbonate compound (fourth endmember, peak at 1060 cm−1) ; both are mixed with the

sodium benzoate, as expected. The main gain of deconvolution clearly appears on the third endmember,

where the silicon contribution is completely suppressed. Another benefit of the restoration step is to

reveal structure hidden in raw abundance maps (first and third endmember).

VI. CONCLUSION

In this paper, we have analyzed the effect of a linear observation system on geometrical hyperspectral

unmixing. When the observation system varies with the spectral channels, the joint mixing and observation

model is no longer bilinear. Blurring by a nonnegative PSF results in the contraction of the minimum

volume simplex enclosing the data. We formally prove the contraction property in the case of a spectrally

constant PSF and show that its extent increases with the PSF width. Hence, unmixing blurred hyperspectral

data is expected to significantly benefit from a deconvolution procedure, which we demonstrate in terms

of endmember extraction and abundance estimations using both synthetic and real Raman spectroscopic

data. Comparing the benefits and computational costs of a sequential or joint deconvolution and unmixing

approach remains an open problem, especially when one needsto resort to blind deconvolution methods.

Perspectives also include identifying application domains where the issue might have been overlooked, e.g.
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microscopy and ground-based astrophysical imaging, and addressing nonlinear unmixing schemes [16].

APPENDIX A

SC 2PROOF

Suppose an hyperspectral image contains three endmembers.After dimension reduction and affine

projection (see section (II)), pixel vectors are enclosed in a triangleS whose vertices correspond to the

endmembers. Suppose further that there are exactly two datapoints per facet ofS and denote these six

points by{P1 . . . P6}. Each pointPi is assumed to be located at a distancer ∗ d from the closest vertex

on its facet, whered is the facet length andr ∈ [0, 1/2]. As illustrated in section (II-C), there are two

possible triangles fitting{P1 . . . P6}, S andS ′.

We first perform an affine transformation so thatS is transformed into a right isosceles triangle. The

respective areasA(S) andA(S ′) are scaled by the same number (that is, the determinant of thetransform

matrix) and the distance ratior is conserved since the transformation is affine. In the new domain, we

haveA(S) = 1/2. By first calculating the equations of the facets ofS ′ and the coordinates of the vertices

of S ′, it is easy to computeA(S ′) as a function ofr:

A(S ′) = |9
2
r2 − 6r + 2| (20)

SolvingA(S ′) > A(S) for r ∈ [0, 1/2] is trivial and yieldsr < 1/3.
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[16] P. Honeine, C. Richard, and N. H. Nguyen. Approches géométriques pour lestimation des fractions dabondance en traitement

de données hyperspectales extensions aux modeles de mélange non-linéaires.Traitement du signal, 30(1-2):61–86, 2013.
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Fig. 9. Performance of unmixing methods as a function of the PSF spreadσ. First column : VCA, second : MVES, third :

SISAL. For each SNR section, the first row displays the spectral angle divergence between the observed / restored extracted

endmembers and their true counterparts (respectively solid and dotted line). The second row displays the mean square error

between the observed / restored estimated abundances and their true counterparts.
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σ = .1 σ = 2.5 σ = 5

Observed simplices

Restored simplices

Fig. 10. Observed and SISAL-restored simplices for three values ofσ and a SNR of 25dB.σ = .1 corresponds to no blurring

(the PSF is only one pixel) while the PSF covers the entire field of view for σ = 5. Pixel vectors are denoted by the symbol ’+’

; true endmembers by circles ; SISAL-estimated endmembers by triangles. The MVS contraction is increasingly severe when σ

increases.
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VCA & FCLS : raw data
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VCA & FCLS : restored data
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NMF-vol : raw data
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Fig. 11. Spectral unmixing results on the real Raman spectroscopy data set.
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Fig. 12. S is the straight-lined triangle,S ′ is the dotted-line triangle.r = .2 in this illustration.
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