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Does deblurring improve geometrical

hyperspectral unmixing?

Simon Henrot, Charles Soussaviember, IEEE Manuel Dossot, and David Bridlember,
IEEE

Abstract

In this paper, we consider hyperspectral unmixing problermere the observed images are blurred
during the acquisition processg,.g. in microscopy and spectroscopy. We derive a joint obseymati
and mixing model and show how it affects endmember identiiiglwithin the geometrical unmixing
framework. An analysis of the model reveals that nonnegdtiurring results in a contraction of both the
minimum-volume enclosing and maximum-volume enclosedpo®m We demonstrate this contraction
property in the case of a spectrally-invariant point-sdr&action. The benefit of prior deconvolution
on the accuracy of the restored sources and abundancessigated using simulated and real Raman

spectroscopic data.

Index Terms

Hyperspectral unmixing, Minimum-volume simplex, Decolutimn

. INTRODUCTION

Multispectral imaging refers to the acquisition of two-@insional (2D) spatial images at different
wavelengths, yielding one spectral vector per pixel of thage. Hyperspectral imaging takes this idea
one step further by improving the spectral resolution todmads or thousands of overlapping spectral
bands. Hyperspectral data may then be viewed as a colleofidrighly resolved spectra. In many

applications, the image contains a small number of pure naéte termedendmemberswhose spectral
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signatures are mixed in each pixel because of limited dpatalution. Spectral unmixing usually refers
to the estimation of endmembers and their fractional couation to each pixel, nameabundances

Many unmixing methods in the literature can be categorizethelonging to either a geometrical, a
statistical (Bayesian) or a sparse regression framewdrkrj4ahe former approach, each spectral vector
belongs to a simplex whose vertices are the endmembers vke[$feeSome algorithms assume that
there exists at least ongure pixel (PP) per endmember and exploit this property by identifyihg
endmembers to the “purest” pixels in the hyperspectralescéfhen thepure pixel hypothesidoes not
hold, the geometrical approach to unmixing then consisfiting the Minimum Volume SimplefMVS)
to the data using one of many MV algorithms. However, highlixed data are beyond the reach of
geometrical algorithms because spectral signatures asteld near the center of the true endmember
simplex. One could then resort to statistical or sparse austio unmix the data set. In this paper, we
focus instead on analyzing and alleviating the effects giengpectral image blurring, which will be
shown to possibly cause highly mixed data.

Hyperspectral images are usually degraded by the obsemvatocess, typically including blurring
and corruption by noise. Data acquired by spectro-imagedicdted to geoscience, remote sensing
or planetology, result from a physics-based inversion Igipeensuring that these images are free of
blur. However, in other domains, the acquisition processsdwot include a deblurring step, resulting in
blurry hyperspectral images. For instance, microscopy, [Raman spectroscopy [10] or ground-based
astrophysical [5], [22] images are blurred by diffractitmaugh the objective aperture. We consider such
hyperspectral images in this paper. Mathematically, edideiwved image plane is obtained as the two-
dimensional convolution of the original image and the cl@dinear shift-invariant blur oPoint-Spread
Function (PSF). If the size of the PSF is less than that of an image ,pikel blur does not alter the
spatial resolution of the data. However, if the PSF supprterels beyond a pixel, neighboring pixels
are combined in the observed data, resulting in additioriing

The latter case arises whenever one aims at obtaining a fatglsgesolution, e.g. in super-resolution
reconstruction [1]. In this framework, some scenes thatccawpriori be geometrically unmixed may lose
this property because of the blur. The operatiorde€onvolutiorwhich inverts the observation process
may then restore the stack so that low computational coritplggometrical methods qualify to unmix it.
In addition, deconvolution algorithms also provide theitiddal benefit of restoring images with higher
signal-to-noise ratios (SNRs).

The ideal approach to account for these two physical phenameuld be to jointly deconvolve

and unmix the data. Let us mention [26] where the authorsoparjoint deconvolution and abundance
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estimation. They assume that endmembers belong to a lacjerdiry and the abundance estimation
is formulated as a sparse regression problem. However,etdoést of our knowledge, no algorithms
have been designed to perform joint deconvolution lid unmixing' of the data. Nevertheless, many
off-the-shelf algorithms are available to perform decdation and unmixing separately. We propose to
show in this paper that the sequential procedure of (dedotiwn/unmixing) yield better results than a
(unmixing/deconvolution) strategy.

To this end, we will study how blurring may affect the resufsgeometrical unmixing methods and
assess whether deblurring hyperspectral images beforé&imgnthem yields quantitative improvements.
The remainder of the paper is organized as follows. Secligrdsents the linear mixing model and
recalls its associated geometrical framework ; we alsoudsddentifiability issues by the geometrical
unmixing approach. In section lll, we factor in the generaservation model and present experimental
results on synthetic data to evaluate the gain of a decotiwnlstep before applying a spectral unmixing
algorithm. Section IV focuses on the specific case where 8feiP invariant across the spectral channels.

Finally, we present experimental results on real data itiGed and we conclude in section VI.

[I. HYPERSPECTRAL GEOMETRICAL UNMIXING FRAMEWORK
In this section, we introduce concepts and notations usexliginout the rest of the paper. Most of
the results given below are not new and can be found elsevihehe literature: see [4] for a thorough

review of hyperspectral unmixing and [6] for an introduatim convex geometry applied to endmember

extraction.

A. Linear mixing model
Consider an hyperspectral image measuring radiancgé different spectral bandsijannely and N
pixels. We gather the data infax N matrix X and use the following notations:

1) x! is the/-th row of x, that is the 2D image at channéhfter lexicographical ordering into a row
vector of length/V;
2) x, is then-th column ofx, i.e. theL x 1 spectrum of the:-th pixel (also termed spectral vector

or pixel vector).

Each spectral vector in the image is a linear combination rofkmown numberP of endmembers

{s1,...,sp}. When unknown,P can be obtained by some model order estimation method such as
Here, blind unmixing refers to the joint estimation of endnfers and abundances.
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virtual dimensionality[7]. Ignoring noise for now, the linear mixing model (LMM) it&s

X =SA
where thepth column of L x P source matrixS indexes endmembey, and thenth columna,, of P x N
abundance matribA contains the fractional abundance coefficientsxfgr

P
X, = Sa, = Z Ap nSp. 1)
p=1

The LMM is generally based on the following assumptions [4]:
i) the number of endmemberR is much smaller than the number of bandsthat isP <« L;
i) matrix S is of full column rank,i.e. endmembersss,...,sp} are linearly independent;
i) Abundance Nonnegativity Constrai(&NC) : A, , > 0 for all p andn;
iv) Abundance Sum Constrai(ASC) : Zle Ay, =1 for all n.

Assumptions (i) and (i) seem very reasonable in hypersgkithaging since many bands are collected
and the image is made up of a few distinct materials. Assumgtiiii) and (iv) come from the physical
interpretation of abundance coefficiey ,, as the fractional spatial area occupied by jptie endmember
in the nth pixel.

To model illumination variability due to surface topogrgdB1], equation (1) sometimes writes, =
vnSa, where parametey,, is a scale factor for each pixel in the hyperspectral scehis fhenomenon
can be accounted for in model (1) by simply rejecting hypsithéiv). The geometrical consequences of

this choice are detailed below.

B. Dimension reduction and affine projection

From equation (1) and assumptions (i) and (ii), it is immeslthat pixel vectors lie in &-dimensional
vector subspace @&%. Suppose the subspace orthonormal bBsis [ey, ..., ep| has been inferred from

the data, e.g. by the HySime algorithm [3], then th#h dimension-reduced pixel is given by
%, = ETx, e RY. (2)

From equation (2) and assumption (iiily-dimensional pixel vectors are enclosed in the convex cone

spanned by dimension-reduced endmemHers. .., sp} [17] (see figure 1):

P
(X% = 085,60, >0,p=1...P}. (3)
p=1
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Fig. 1. lllustration in dimensionP = 3 of the convex cone spanned by dimension-reduced endmenigrs = 1... P}

enclosing dimension-reduced pixels,’s. x,, is obtained by perspective projection ®f, on the affine plane supported by
{$p,p=1...P}.

In order to satisfy hypothesis (iv), the-dimensional points are then projected ont@Pa- 1)-dimensional
affine plane (see figure 1). The choice of a particular affirmelis arbitrary and may be viewed as
imposing the norm of the supporting endmembers.

Most algorithms use either an orthogonal projection [6] loe perspective projection [4] onto the
(P — 1)-dimensional affine plane : the choice of one method or amasheelated to the SNR, see [21].
For example, the perspective projection consists in sgalirel vectors

% = o (4)
to project them onto the hyperplane definedbyu = 1 for every vectorv € R”, whereu € RY is
chosen beforehand such thgfu > 0 for all n. From equations (1), (2) and (4), theth projected pixel

vector rewrites

P
Xp =Y pnyp (5)
p=1

where coefficientsy, ,, are given by

A aT
o — A su Apmspu ©)
pn = Apnp— = T

xT'u Zq Agndliu

It is easy to see that the, ,,’s satisfy the following properties:

1) apn > 0 for all p andn, under the ANC;
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2) >, apn=1forall n.

It follows that each projected pixel vectss,, is a convex combination of the projected endmembers

{sp,p =1... P}. Hence, projected pixel vectors belong to the convexSset

S ={x

P P
X= 080, >0,p=1...P) 0,=1}. (7)
p=1 p=1

By definition, S is the simplex whose vertices are the projected endmern{Bers..,sp}.

C. Minimum Volume Simplex (MVS)

Most geometrical unmixing algorithms are based on the kega iohtroduced by Craig [9] that the
minimum-volume simplex (MVS) enclosing all the pixel vectors identifies with and thus the end-
members we seek can be extracted as the vertices of the M\M&SMWhconstraint allows to regularize
the ill-posed nature of the nonnegative source separatioblgm [20]. Alternatively, one can look for
the maximum-volume simplexinscribed in the dataset, provided the image contains pixedsp(PP).
Recovering both simplices can be addressed as a combaigbooblem but is too complex to handle
high dimensional data [12], [27]. Simple and computatibnalfficient approaches were proposed e.g.

[24], [21] in the MVS case and [9], [8], [6] in the PP case, amanany others.

(@) (b) (©)

Fig. 2. 2D examples of triangles enclosing the dataffoe= 3 endmembers. The true unknown simplgxs represented with

a straight line while the other candidate triangle is plbttdth a dotted line. Data points are represented as holloglesi and
the vertices of the simplices are filled circles. (a): Staetr(1) is true, i.eS is the MVS. (b): both triangles are MVS’s for

this data configuration. (c): the dotted-lined triangle hasmaller volume tha& and thus is the MVS.

We point out that unlike in the PP case, the MVS and tilue simplex S whose vertices are the

endmembers may be different simplices. Figure 2 illussrdite distinction between the MVS atlin
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the simple case wher® = 3, yielding a 2D affine plane. In what follows, we discuss thelgem of
endmember identifiability using the MVS approach. Craig&ement can be rewritten in the following

way:
Statement 1.the MVS identifies witks.

The first problem with the statement is that there might axiste than one MVS: see figure 2b. This
case is not likely to arise in practice if enough data poirstgehbeen collected so that there exists data
points near the vertices d.

Assuming there exists only one MVS, the following result ¢éenfound in the literature [4]:
Sufficient condition 1. If there is at least one data point on each vertexSofthen statement 1 is true.

This sufficient condition (SC) is known as tpere pixel conditionFor P = 3, we make the following

statement whose proof is given in appendix A (see figure 2c):

Sufficient condition 2. If there are at least two data points per facet®ivhose distance with the closest

vertex is no greater than a third of the corresponding facéghgth, then statement 1 is true.

SC 2 is weaker than SC 1. We note that a recent paper estabtisicessary and sufficient conditions
for the identifiability of endmembers by Craig’s criterianthe 3-endmember case, see [18]. Formulating
such a statement for higher dimensions (that is, for more theee endmembers) is difficult and out of
the scope of this paper. Rather, we stress that endmemigersaae likely to be accurately identified by
a MVS algorithm if there are pixel vectors near the vicinitiytloe vertices ofS in the data. Obviously,
if the data is highly mixed, the MVS will be enclosed & and identifiability conditions will not be
satisfied. Such a situation can arise because of two majeomsa

1) the abundance distributions themselves;

2) additional mixing due to the imaging system, as we will destrate in the next section.

In the latter case, this undesirable contribution can beowemh by image restoration methods, thus

improving endmember identifiability conditions.

[1l. EFFECT OF THE IMAGING PROCESS
A. Blurring of the linear mixture

In this section we now account for the fact that the image gratded during the acquisition process.

Under the common linear blur assumption, the 2D img§ebserved at a given channeis obtained
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as the 2D convolution product of the true image and the cHapwipt-spread functiorf{‘:
y' = xH' ®)

where theN x N observation matrid? is a convolution matrix corresponding #‘. For instance, when
the blur is space-invariantH)” is a block-Toeplitz matrix where each block is Toeplitz Pl4Each

entry of the observed data matri is given by

N
Yop =Y XenHp s €)
n=1

Using equations (1) and (9), the overall model combinings@pbbservation blurring and linear mixing

of endmembers writes
N P

Yor =Y SepApnH)y + Wep (10)
n=1p=1

where W is the noise term and model (10) assumes that the SNR is highgénfor the noise to be
additive and i.i.d. Gaussian. We observe that the blurreéd da not satisfy the LMM since the mixing
coefficientsA,, ,H}, , depend on the channel indéx Thus, even in the absence of noitlee y;’s do

not necessarily belong toS anymore.

B. Pixel trajectories

Since the abundances vary with the channel index, it is ngdopossible to use barycentric coordinates
to represent a pixel vector in the simplex formed by the endbers [15]. To give some insight into the
understanding of the effect of the channel dependent bluherinear mixture, we propose to use the
representation of figure 4. The endmembers correspond teetttiees of the simplex. Note that in this
figure the simplices locations are arbitrarily fixed(@0), (0,1) and(1/2,+/3/2) resulting in an isoceles
triangle. As the mixing coefficients are depending on thenokindex, a mixed pixel can no longer be
represented as a single point. For each channel, we haeeetiffmixing coefficients. We rather represent
a channel dependent mixed pixel by a trajectory where eait pbthe trajectory corresponds to the
barycentric coordinates at a particular channel.

Figure 3 displays a few pixel trajectories for a Gaussian R86se width linearly increases with the

channel indeX Interestingly, this representation provides spatiabinfation about the pixel at hand. For
2The transpose comes from the fact tikdtandy* are row vectors.

3We restrict our analysis to the case of PSFs whose width aseewith the channel index (i.e. wavelength) becauseghis i
the relevant case of conventional optical systems.
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Fig. 3. Examples of trajectories of a few pixel vectors.

instance, a trajectory that goes from a vertex to another imdigate that the pixel is located in the
boundary of two regions, each corresponding to a particetmember; a trajectory pointing towards
the center of the simplex corresponds to a highly mixed pixel

As a consequence, even if applying a linear unmixing algoridirectly to the data is feasible, the
resulting endmembers and abundances are literally unmgfahi\We rather propose to perform deblurring
prior to the unmixing step and numerical experiments areduoted in the next section to assess the
gain of doing so.

To conclude this section, we note that blurring caused byrmegative PSF results in@ntraction

propertywhose extent increases with the PSF width. We will come badkat point in section IV.

C. Experimental results

To quantitatively assess the effects of deblurring on hggpectral unmixing, we use synthetic data
so that the extracted endmembers may be compared to theictunterparts. First, we seleBt= 3
true independent endmembers from the United States Gealdgurvey (USGS) spectral librafy Each
endmember signature is sampled on 224 spectral bands. Wesymthesize a set aP random two-
dimensional (2DB0 x 30 abundance maps modeled as a mixture of 2D Gaussian funetitmsandom
locations and widths, under the constraint that the aburetafor each pixel sum to one. The true data

stack is then computed using equation (1).

“4Available online from: http://speclab.cr.usgs.gov/spadib.html

January 30, 2014 DRAFT



10

0.7

06

05

radian

0.4]

03

02

0.1

50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250

spectral band spectral band spectral band
Fig. 4. Selected endmembers.

1
09
09 07
08 5
08
06
07
" 07
05
06 0
05 15 05 04
04
04 03
2
03 03
02
02 » 02
01 o1 01
%
5 w15 20 B % 5w 15 20 B % 5 ]

Fig. 5. Examples of abundance maps generated as spatiairasxof 2D Gaussian distributions with random means and

variances.

Image degradation is simulated by convolving each chanitél & 2D Gaussian PSF whose width
varies linearly with the channel index, from one pixel to thire field of view. The approximation of
physical PSFs by 2D Gaussian functions is actually readerfab numerous optical systems, including
fluorescence microscopy [25], Raman microscopy [10] andogpheric turbulence [26]. We then add
i.i.d. Gaussian noise at a specific SNR value. We wish to etalilhe effect of deconvolution for different
noise levels. Hence, we run three separate experimentsregfiective SNRs of 5dB, 25dB and 50dB.
The rationale for these values is that at 5dB, the role of #aeodvolution algorithm is to both denoise
and deblur the data, while at 50 dB its main role will consistdeblurring. A SNR of 25dB is viewed
as a more standard situation.

Image deconvolution is achieved using the algorithm dbsedriin [14] which accounts for spectral
and spatial smoothness and non-negativity of multispkeatrd hyperspectral data. The rationale for this

choice is that the priors of the methods are well adapted ¢oddia and its low complexity allows
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Fig. 6. Original data simplex (with no blur and noise) ob&airby Principal Component Analysis and orthogonal projecti

Pixel vectors are denoted by the symbol '+, endmembers toles.

a computationally efficient simulation. This algorithm végs tuning two regularization parameters,
weighting respectively a spatial and spectral smoothness, glenoted by andv. For each situation,
we run the algorithm by setting these parameters ®6a10 logarithmic grid, with values ranging from
10~ to 10%. Since we only evaluate hyperparameters on a finite gridpriedution of the data may not
be optimal. However, the deconvolved image is always clas#éne true image in the mean square error
sense.

For each experiment, spectral unmixing is carried out oh bt degraded data set and the deconvolved
data set. Endmember extraction is performed using threespigéad geometrical-based algorithms :
Vertex Component Analys{¥CA) [21], Minimum-Volume Enclosing SimpléMVES) [6] and Simplex
Identification via variable Splitting and Augmented Laggam (SISAL) [2], using MATLAB code
published by the authors. Abundance estimation is autcaibticarried out with MVES and we use Fully
Constrained Least Squares inversion (FCLS) [13] to compbtendances for VCA and SISAL. While
VCA is based on the pure pixel hypothesis, both MVES and SIS#¢ minimum-volume algorithms,
hence the choice of these three methods allows the scrufimy wide range of situations. The goal
here is to evaluate the increase of performance brought cangolution step for all algorithms, rather

than comparing the results of one algorithm to another, wvinould not be fair as they depend on the
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SNR Endmember extraction SAD Abundance estimation MSE

VCA MVES SISAL VCA MVES SISAL

Data| Raw | Restored| Raw | Restored| Raw | Restored] Raw | Restored] Raw | Restored| Raw | Restored
5 0.8840| 0.4344 | 2.2361| 0.5206 | 0.8439| 0.4936 | 0.0032| 0.0029 | 0.0062| 0.0031 | 0.0035| 0.0027
25 0.8951| 0.2780 | 0.6640 0.83 0.7856 | 0.4385 | 0.0046| 0.0085 | 0.0037| 0.0041 | 0.0035| 0.0027
50 | 0.8926| 0.2915 | 3.0823| 0.4330 | 0.8527| 0.4176 | 0.0046| 0.0082 | 0.0062| 0.0018 | 0.0035| 0.0017

TABLE |

ENDMEMBER EXTRACTION AND ABUNDANCE ESTIMATION ERRORS FOR A XRIANT PSF.

situation at hand.

We choose the following performance metrics:

1) thespectral angle distancé€SAD) between the true and extracted endmembers:
1 s)

SAD, = cos <p7A

P ”Sp”g Hsp”g

The total SAD is given by SAD= > SAD,;

Sp

),pzl...P. (11)

2) TheMean Square ErroMSE) between the true and estimated abundances, given by
MSE = ||A — A||2. (12)

We then store the unmixing results on the raw data for eacht pfi the hyperparameter grid and
select the point which corresponds to the best extractiold.SPhis choice is arbitrary : depending
on the application, it may be better to select the deconwrlutesult yielding the smallest abundance
estimation MSE. In either case, we point out that both thesmtities could provide interesting criteria
for hyperparameter selection.

Table | gives the various performances obtained for endneeraktraction and abundance estimation
by VCA, MVES and SISAL with and without a prior deconvolutistep. Deconvolving the image prior

to image unmixing improves the results for all algorithms.

IV. CASE OFPSFINVARIANCE

In this section, we focus on the specific case where the PS#asiant across channels. This case is

actually important in practice and arises in many imagirigagions, such as Raman microscopy.
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Fig. 7. Left : original projected pixel vectors, right : daged projected pixel vectors. The data cloud is shrinkedhiey t

observation process and pure pixels become mixed in the\auseata.

A. Bilinear model

In the specific case where the PSF is invariant across chgntiel model reduces to the bilinear

equationY = SAH + W where each dimension-reduced pixel is given by

N P
yk = Z Z Ap,an,kép + Wk (13)

n=1p=1
The k-th projected pixel vectog;, = yk/y{u is then a noisy bilinear combination of the projected

endmembergs, = §,/8Tu,p=1... P}:

N P AT
o ’ o w,.u
V= DD iy + W (14)
n=1 p=1 yk
- , ,
where coefficientsy, ,, , are given by
T T
Stu A, H, 182 u
/ I4 p,n""n,k"p
O[p,n,lf = APv"ank (15)

VTu Sy AgmHpn St
From equation (15), we can see that coeﬁicieyzgg’k satisfy the nonnegativity and sum-to-one properties:
1) O‘;,n,k > 0 for all p, n and k under the ANC and knowing that PSFs entries are nonnegative;

2) Y pn @y =1forallk=1...N.
Thus, in the case where the PSF is invariant across chanmélmahe absence of noise, the observed
pixel vectors{yy,k = 1... N} remain in the simplex§ (defined in equation (7)). However, the additional

mixing introduced by the PSF may hinder spectral unmixing aifferent way, as shown in section IV-B.
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B. MVS contraction

How does the observation process affect the distributionixél vectors inside the simplex? The
answer to the question obviously depends on the nature d?&te Since the entries & are known to
be nonnegative, the blurring process tends to average oaigly pixel intensities. Hence:

1) suppose the data include a pure pixgl thenx,, locates on a vertex af. If a mixed pixelx,,

is in the spatial neighborhood of,,, the observed,, will appear mixed in the observed image,
which will relocatey,, towards the inside of;

2) similarly, if a sources, is not present in a given pixet,, but appears in its neighborhood, the

observed pixel vectoy,, will include a contribution froms,, andy,, will move towards the inside
of S.
This phenomenon inclines observed spectral vectors tdecltiswards the center &§. As a graphical
illustration, consider for a simple multispectral imagahM x 3 = 9 pixels and 3 spectral bands, each
blurred with a3 x 3 averaging kernel:
1/9 1/9 1/9
H=1|[1/9 1/9 1/9|. (16)
1/9 1/9 1/9
Suppose our data set satisfies the pure pixel hypothesisalandncludes some mixed pixels, yielding
the following 3 x 9 abundance matrix:
1 1/2 0 1/2 1/3 1/6 0 1/6 0
A=10 0 0 1/2 1/3 1/6 1 2/3 1/2|- (17)
0 1/2 1 0 1/3 2/3 0 1/6 1/2
The resulting simplices for the original and degraded datagaven in figure 7. The data cloud clearly
suffers a shrinkage inside of from the observation process. Let us now formally state ¢bistraction
property, using the notion afonvex hull The convex hull of the data should not be confused with the
MVS which necessarily ha® vertices; in contrast, the convex hull has upXNovertices which all are

pixels.

Proposition 1. Let S; denote the MVS enclosing the true daaS; the one enclosing the blurred data
Y andV denote the volume. If the PSF is nonnegative, then the cdnéxof Y is enclosed in the
convex hull ofX and

V(SE) < V(SL) (18)
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Proof: Assume the PSF coefficients are nonnegative. Then eachvebseixel y; is a linear
nonnegative combination of the original pixgl&,,n = 1... N} (or possibly a subset aX depending
on the support of the PSF). Hengg belongs to the conical hull dK for eachk. It follows that the
convex hull of the projected observed pixel vectdss,k = 1... N} is included in the convex hull of
{xp,m=1...N}.

ThereforeSg encloses all pixelgyy, k = 1... N}. SinceS; is the MVS enclosindyy,k =1... N},
we necessarily have
V(SE) < V(SL) (19)

(Note however that while the volume &f; is smaller,S3 is not necessarily included iy.) ]

In the case of Gaussian PSFs, Proposition 1 has an inteyesimsequence for the variant PSF case.

Proposition 2. Consider two symmetric separable 2D Gaussian P&rsand #H, of respective width
satisfyingo; > o9. Let {yi,y2} denote the respective observed projected pixels &§itl S5} the
respective MVSs. Then the convex hullefis included in the convex hull gf; and V(S;) < V(S;).

Proof: The PSFs being separabf®; may be written as the 2D convolution product®f and a
Gaussian kernel of standard deviatigfv? — o3. Since all kernels are nonnegative, Proposition 2 is a
straightforward application of Proposition 1. |

Getting back to the idea of pixel trajectories outlined iotam (I11-B), when the PSF width increases
with the channel, proposition (2) allows us to deduce thatabnvex hull of points at a given chanrtel
is included in the convex hull of points at chandel 1. We now resume the discussion of the invariant
PSF case.

Hence, we know from section II-C that directly applying a gatrical unmixing algorithm to the
observed data may produce incorrect endmembers, and tagsiltisequent estimation of abundances will
also be biased. In the next section, we study the improveieahmixing performance after applying

a deconvolution algorithm to the data.

C. Experimental results

Here, we consider the effect of the standard deviation oP{BE on our performance metric, using the
same synthetic data and experimental protocol as in seliti@h For a fixed SNR value, we consider
each kernel size from one pixel & 0.1) to the the entire field of view of the image & 5). For each
value of o, we run the deconvolution algorithm for spatial and spéctgularization parameters on the

previously used grid. We display our experimental resuttfigure 9 and note a few key points:
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S3

o1

S1 52

Fig. 8. lllustration of the nesting property of convex huitem channel to channel (variant PSF case).

1) As expected, the performance of both endmember extraetiol abundance estimation are better
after a deconvolution step, the margin between the two tesaihding to increase with except
for a few localized values of. The reason why the unmixing algorithms perform slightlytéxe
on the raw data for these values certainly owes to the limitedhg of hyperparameters in the
deconvolution step.

2) All unmixing results show a decrease in performance, hotherms of endmember extraction
(increase of SAD) and abundance estimation (increase of)M®En ¢ increases. Owing to the
random initializations of the unmixing algorithms, thearcurves are not purely monotonic. The
decrease in performance seems very intuitive since theigeeé the observed data degradation
increases withy.

3) The parameter search on the deconvolution step allowsatulize the solution. Of course, the
simulation makes use of ground truth while computing thet Ipgsameter values. In order to
perform tuning in real imaging situations, one could usebealy of spectral signatures and seek
the parameters minimizing the spectral angle distancedmivthe extracted endmembers and the
corresponding ground truth endmembers that are a prionvkrto be present in the image.

Figure 10 is a geometrical view of the results of figure 9 tHasng the distance between the unknown

and recovered sources, both on the raw and restored dataréw values of the PSF spread The
results clearly show the MVS contraction caused by the inlgrprocess and the reverse effect of the

deconvolution step.
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Let us sum up our experimental results in the invariant PSE.c& prior deconvolution step increases
the performance of endmember extraction and abundanceat®n for a vast majority ob values. Of
course, the wide variety of situations (abundance mapsnentbers, PSF spread, SNR, ...) make general
statements difficult to quantify. However, in all our expeents, the unmixing results after deconvolution
were always at least comparable and most of the time muchrldetin the results obtained on the raw

data.

V. EXPERIMENTAL RESULTS ON REAL DATA

In this section, we evaluate the gain of deconvolution on iximg real Raman spectroscopy data. Our
hyperspectral data set comprises images of 8&e 131 pixels, each pixel beingd00 nm x 100 nm,
acquired on 337 bands ranging fra#00 cm~! to 1200 cm~!. The scene of interest consists in a grain
of sodium acetat€d CH;COONa) covered withsodium carbonatgNa,COs) laying on asilicon layer
(Si). Part of the sodium carbonate reacts with water vapoyigtl hydrated sodium carbonate. These
four chemical compounds are the endmembers we seek. A thiorimgpection of the data reveals that
the silicon compound contributes to all pixels of the imagbe extraction of these endmembers is a
challenging problem, since silicon is the only compoundvithich the pure pixel assumption is fulfilled.
Because of the inherent high mixing of the data, even MV nushare not supposed to produce good
results on this data set.

Given the limited spectral range, the PSF is considered tionziant across channels. It is modeled
as a 2D Gaussian function [10] with an experimentally messdull-width at half maximum of 300
nm. We apply our deconvolution algorithm to the data by sgttiegularization parameters through a
trial-and-error process to = 20 andv = 5.

VCA and FCLS are carried out on both the raw data matrix anck@&®red counterpart ; the results are
displayed in figure 11. The first extracted endmember cooredp to the silicon layer, which presents a
broad band a#10—960 cm~! due to the 2TO harmonic phonon mode of bulk silicon. The degioition
step allows to denoise its abundance map and more impgstamitovers structure that was distributed
throughout other abundance maps. The second endmembatiisnsacetate, with a peak 880 cm™!
due to the intense C-C stretching mode of the acetate mel¢28]. It is well isolated by VCA (both for
the raw and restored data), perhaps because the width ofdhrergake this endmember almost uniquely
contribute to some pixels. However, the third and fourthreaohbers present mixed spectral contributions
from all compounds : both forms of sodium carbonate, hydrated non hydrated (respective peaks

at 1060 and 1080 cm~') as well as silicon and sodium acetate. The deconvolutiep again reveals
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structure in the fourth endmember that was not displayetiéncise of raw data.

Further analysis of the spectra also show bandstatcm—! and 1004 cm™!, which reveals that the
data have accidentally been polluted with sodium benzd¢a€{H;0,) [11]. Because this compound is
associated with the sodium carbonate phase, experimetitSweindmembers do not yield improvements,
both compounds being mixed in a unique endmember.

Both MVES and SISAL extract endmembers with negative peats fthis data set, rending them
physically unmeaningful, so we do not include results frose algorithms. However, we employ another
minimum-volume algorithm : theNonnegative Matrix FactorizatiofNMF) with volume constraints
(NMF-vol) on the inferred simplex [19]. The algorithm operates orhbibe raw data (where negative
pixels have been clipped to zero since the algorithm impasasnnegative data matrix) and restored
data. Due to computation times, it was not possible to irelilnds method in our previous simulations on
synthetic data; here we sgi000 as the maximum number of iterations. The resulting abunelaraps and
endmembers are also given in figure 11. The spectral shapgalaiembers extracted from the raw data
appear noisier, a problem solved by the deconvolution stép. sodium acetate endmember displays
more undesirable contribution from the silicon compoundwiver, the algorithm is able to separate
the sodium carbonate compound (third endmember, chaizedeby the peak at080 cm~!) from the
hydrated sodium carbonate compound (fourth endmembek,gtd@60 cm~!) ; both are mixed with the
sodium benzoate, as expected. The main gain of deconvolakéarly appears on the third endmember,
where the silicon contribution is completely suppressedotAer benefit of the restoration step is to

reveal structure hidden in raw abundance maps (first and éndmember).

VI. CONCLUSION

In this paper, we have analyzed the effect of a linear observaystem on geometrical hyperspectral
unmixing. When the observation system varies with the spkechannels, the joint mixing and observation
model is no longer bilinear. Blurring by a nonnegative PS§ults in the contraction of the minimum
volume simplex enclosing the data. We formally prove thetrmamtion property in the case of a spectrally
constant PSF and show that its extent increases with the RBir. Wence, unmixing blurred hyperspectral
data is expected to significantly benefit from a deconvotupmcedure, which we demonstrate in terms
of endmember extraction and abundance estimations usithgslyathetic and real Raman spectroscopic
data. Comparing the benefits and computational costs ofueeségl or joint deconvolution and unmixing
approach remains an open problem, especially when one teeesort to blind deconvolution methods.

Perspectives also include identifying application doreauhere the issue might have been overlooked, e.g.
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microscopy and ground-based astrophysical imaging, addeading nonlinear unmixing schemes [16].

APPENDIXA

SC 2PROOF

Suppose an hyperspectral image contains three endmen#fegs.dimension reduction and affine
projection (see section (ll)), pixel vectors are enclosed iriangleS whose vertices correspond to the
endmembers. Suppose further that there are exactly twopdétés per facet oS and denote these six
points by{P; ... FPs}. Each pointP; is assumed to be located at a distaneel from the closest vertex
on its facet, wherel is the facet length and € [0,1/2]. As illustrated in section (lI-C), there are two
possible triangles fittind P, ... s}, S andS'.

We first perform an affine transformation so tifais transformed into a right isosceles triangle. The
respective aread(S) and.A(S’) are scaled by the same number (that is, the determinant arfathsform
matrix) and the distance ratiois conserved since the transformation is affine. In the nemado, we
have A(S) = 1/2. By first calculating the equations of the facets®%fand the coordinates of the vertices

of &', it is easy to computel(S’) as a function ofr:

A(S') = |§r2 612 (20)

Solving A(S’) > A(S) for r € [0,1/2] is trivial and yieldsr < 1/3.
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Fig. 9. Performance of unmixing methods as a function of tB& Bpreads. First column : VCA, second : MVES, third :
%ﬁ%‘ry EQr-83gh SNR section, the first row displays the speetngle divergence between the observed / restorgg sgefiract
endmembers and their true counterparts (respectively sold dotted line). The second row displays the mean squave er

between the observed / restored estimated abundanceseainttik counterparts.



oc=25

o=25
Observed simplices
" Wty

o 0
P +&+¢ ff’#ﬁ ;ﬁw
] + i
+§Hf+ :r: o, +++;r :r#wfj; L o A
A + I Rt +7
Hgth e, e gt L
L3 + T bt b
+ o+ 1t +f & 4 + + o
%F# *‘1{ ﬂﬁ ey 4 & °
++ :ﬁ* oo+ Fhe
g *}ﬁ £ i* + ot
sEFT a4
% b e o
WQ;}; 4 ++*#++ + 4
BB e A
e +
WH :JHF I}‘r *jﬁ
#J;##Jr# ﬂ N +&t#
H .
Tt L I Jyﬂﬁ
WL L £
W
+#§+++++4;r
FREG
F+ i
4
}*&
By A
+ Ho4 +H %
%ﬂif {*Y}t LR
& + +F +
i 7 + % ity
%{ + ey e +#¢+ﬁ++¢:§ﬁ&ﬁ#
¥y iy * B T
A At 4o
«‘% et vy
+ + + +
ﬁ#ﬁt Rt 4t i+ :
PR Taot +
+ + ot
+ T I n + f
By R
o

#
+ T L + #3:
+f ++1; KO

T e %ﬁ’

%# + Ku o s

ﬁﬁ# P W

Wt AT

%+++*+Hiﬂf*+ h3

& A

+ T

by TE

increases.

Fig. 10. Observed and SISAL-restored simplices for thrdeegaofo and a SNR of 25dBs = .1 corresponds to no blurring
; true endmembers by circles ; SISAL-estimated endmembetsdngles. The MVS contraction is increasingly severe nbe

(the PSF is only one pixel) while the PSF covers the entire fiélview for o = 5. Pixel vectors are denoted by the symbol '+

January 30, 2014

DRAFT

23



Endmembers

Abundances

Endmembers

Abundances

Endmembers

Abundances

Endmembers

Abundances

January 30, 2014

Fig. 11. Spectral unmixing results on the real Raman spembpy data set.
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Fig. 12. S is the straight-lined triangle$’ is the dotted-line triangle: = .2 in this illustration.
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