On the family of $r$-regular graphs with Grundy number $r+1$ - Archive ouverte HAL
Article Dans Une Revue Discrete Mathematics Année : 2014

On the family of $r$-regular graphs with Grundy number $r+1$

Résumé

The Grundy number of a graph $G$, denoted by $\Gamma(G)$, is the largest $k$ such that there exists a partition of $V(G)$, into $k$ independent sets $V_1,\ldots, V_k$ and every vertex of $V_i$ is adjacent to at least one vertex in $V_j$, for every $j < i$. The objects which are studied in this article are families of $r$-regular graphs such that $\Gamma(G) = r + 1$. Using the notion of independent module, a characterization of this family is given for $r=3$. Moreover, we determine classes of graphs in this family, in particular the class of $r$-regular graphs without induced $C_4$, for $r \le 4$. Furthermore, our propositions imply results on partial Grundy number.
Fichier principal
Vignette du fichier
Grundyhaltex.pdf (245.53 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-00922022 , version 1 (23-12-2013)
hal-00922022 , version 2 (19-05-2014)

Identifiants

Citer

Nicolas Gastineau, Hamamache Kheddouci, Olivier Togni. On the family of $r$-regular graphs with Grundy number $r+1$. Discrete Mathematics, 2014, 328 (5-15), pp.5-15. ⟨10.1016/j.disc.2014.03.023⟩. ⟨hal-00922022v2⟩
442 Consultations
335 Téléchargements

Altmetric

Partager

More