The number of open paths in oriented percolation - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2013

The number of open paths in oriented percolation

Résumé

We study the number $N_n$ of open paths of length $n$ in supercritical oriented percolation on $\Zd \times \N$, with $d \ge 1$. We prove that on the percolation event $\{\inf N_n>0\}$, $N_n^{1/n}$ almost surely converges to a positive deterministic constant. We also study the existence of directional limits. The proof relies on the introduction of adapted sequences of regenerating times, on subadditive arguments and on the properties of the coupled zone in supercritical oriented percolation.
Fichier principal
Vignette du fichier
compte-chemin-preprint-v3.pdf (227.01 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00916083 , version 1 (09-12-2013)
hal-00916083 , version 2 (27-01-2015)
hal-00916083 , version 3 (04-03-2015)

Identifiants

Citer

Olivier Garet, Jean-Baptiste Gouéré, Régine Marchand. The number of open paths in oriented percolation. 2013. ⟨hal-00916083v3⟩
307 Consultations
195 Téléchargements

Altmetric

Partager

More