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Introduction

Having in mind subadditive ergodic theorems, it seems then natural to think that, on the percolation event "the cluster of the origin is infinite", the number N n of open paths with length n starting from the origin should grow exponentially fast in n. However, the possibility for edges to be closed implies that log N (•, •) may be infinite, and therefore not integrable. This prevents from using subadditive techniques, at least in their simplest form. The growth rate of N 1/n n and related objects have already been studied. Fukushima and Yoshida [START_REF] Fukushima | On exponential growth for a certain class of linear systems[END_REF] proved that limN 1/n n is almost surely strictly positive on the percolation event. Lacoin [START_REF] Lacoin | Existence of an intermediate phase for oriented percolation[END_REF] proved that the straigtforward inequality limN 1/n n ≤ p(2d + 1) is not always an equality. In spite of those works, to our knowledge, there was no proof of the convergence of N 1/n n in the literature.

Such a convergence has been obtained for a relaxed kind of percolation called ρ-percolation. Let ρ ∈ (0, 1) and let N n (ρ) denotes the number of paths with length n using at least ρn open edges. The existence of the limit N n (ρ) 1/n has been proved in Comets-Popov-Vachkovskaia [START_REF] Comets | The number of open paths in an oriented ρ-percolation model[END_REF] and in Kesten-Sidoravicius [START_REF] Kesten | A problem in last-passage percolation[END_REF] by different methods.

The present paper aims to prove that in supercritical oriented percolation, N 1/n n has an almost sure limit on the percolation event. The proof relies on essential hitting times which have been introduced in Garet-Marchand [START_REF] Garet | Asymptotic shape for the contact process in random environment[END_REF] in order to establish a shape theorem for the contact process in random environment. Let us now define precisely the oriented percolation setting we work with.

Oriented percolation in dimension d + 1. Let d ≥ 1 be fixed, and let

. 1 be the norm on R d defined by

∀x = (x i ) 1≤i≤d ∈ R d x 1 = d i=1 |x i |.
We consider the oriented graph whose set of sites is Z d × N, where N = {0, 1, 2, . . . }, and we put an oriented edge from (z 1 , n 1 ) to (z 2 , n 2 ) if and only if

n 2 = n 1 + 1 and z 2 -z 1 1 ≤ 1;
the set of these edges is denoted by -→ E d+1 alt . We say that γ = (γ i , i) m≤i≤n ∈ (Z d × N) n-m+1 is a path if and only if ∀i ∈ {m, . . . , n -1} γ i+1 -γ i 1 ≤ 1.

Fix now a parameter p ∈ [0, 1], and open independently each edge with probability p. More formally, consider the probability space Ω = {0, 1}

- → E d+1
alt , endowed with its Borel σ-algebra and the probability There exists a critical probability -→ p c alt (d + 1) ∈ (0, 1) such that:

P p = (Ber(p)) ⊗ - → E d+1
P p ((0, 0) → +∞) > 0 ⇐⇒ p > -→ p c alt (d + 1).

In the following, we assume p > -→ p c alt (d + 1), and we will mainly work under the following conditional probability:

P p (.) = P p (.|(0, 0) → +∞).
Global convergence result and previous results. Denote by N n the number of open paths of length n emanating from (0, 0). Our main result is the following. We now recall some questions related to this convergence problem. First, note that E p (N n ) = ((2d + 1)p) n . As noticed by Darling [START_REF] Darling | The Lyapunov exponent for products of infinite-dimensional random matrices[END_REF], the sequence (N n ((2d + 1)p) -n ) n≥0 is a non-negative martingale, so there exists a nonnegative random variable W such that

P p -a.s. N n (2d + 1) n p n -→ W and E p [W ] ≤ 1.
Therefore, it is easy to see that 1 n log N n → log((2d + 1)p) on the event {W > 0}.

So when W > 0, N n has the same growth rate as its expectation. In his paper [START_REF] Darling | The Lyapunov exponent for products of infinite-dimensional random matrices[END_REF], Darling was seeking for conditions implying that W > 0. It seems that these questions have been forgotten for a while, but there is currently an increasing activity due to the links with random polymers -see for example Lacoin [START_REF] Lacoin | Existence of an intermediate phase for oriented percolation[END_REF] and Yoshida [START_REF] Yoshida | Phase transitions for the growth rate of linear stochastic evolutions[END_REF]. Actually, it is not always the case that W > 0.

Let us summarize some known results:

• P p (W > 0) ∈ {0, 1}. The random variable χ = lim n→+∞ 1 n log N n
is P p -almost surely constant (see Lacoin [START_REF] Lacoin | Existence of an intermediate phase for oriented percolation[END_REF]). Note that a simple Borel-Cantelli argument ensures that χ ≤ log((2d + 1)p).

• W = 0 a.s. if d = 1 or d = 2 (see Yoshida [10]). • There exists -→ p c,2 alt (d + 1), -→ p c,3 alt (d + 1) ∈ [ -→ p c alt (d + 1)
, 1] such that:

-P p (W > 0) = 1 when p > -→ p c,3 alt (d + 1) and P p (W > 0) = 0 when p < -→ p c,3 alt (d + 1
).

χ = log(p(2d + 1)) P p -almost surely when p > -→ p c,2 alt (d + 1) and

χ < log(p(2d + 1)) P p -almost surely when p < -→ p c,2 alt (d + 1). --→ p c,2 alt (d + 1) ≤ -→ p c,3 alt (d + 1). --→ p c,3 alt (d + 1) < 1 if d ≥ 3. See Lacoin [9] Sections 2.2 and 2.3. • It is believed that -→ p c,2
alt (d+1) > -→ p c alt (d+1) and thus -→ p c,3 alt (d+1) > -→ p c alt (d + 1) when d ≥ 2. Lacoin [START_REF] Lacoin | Existence of an intermediate phase for oriented percolation[END_REF] proved that the inequality is indeed strict for L-spread-out percolation for d ≥ 5 and L large. In any case, it is clear that we need a proof of the existence of a limit for 1 n log N n that would not require W > 0. Our next result focuses on open paths with a prescribed slope.

Directional convergence results.

We first need to give a few more notations and results. Oriented percolation is known as the analogue in discrete time for the contact process. Usually, results are proved for one model, and it is commonly admitted that the proofs could easily be adapted to the other one. For the results concerning supercritical oriented percolation we use in this work, we will thus sometimes give the reference for the property concerning the contact process without any further explanation.

We define

ξ n = {y ∈ Z d : (0, 0) → (y, n)} and H n = ∪ 0≤k≤n ξ k .
As for the contact process, the growth of the sets (H n ) n≥0 is governed by a shape theorem when conditioned to survive: for every p > -→ p c alt (d + 1), there exists a norm µ p on R d such that for every ε > 0, P p almost surely, (1)

∃N ∀n ≥ N B µp (0, (1 -ε)n) ⊂ H n + [0, 1] d ⊂ B µp (0, (1 + ε)n),
where B µp (x, r) = {y ∈ R d : µ p (y -x) ≤ r}. See, for the supercritical contact process, Durrett [START_REF] Durrett | The contact process, 1974-1989[END_REF] or Garet-Marchand [START_REF] Garet | Asymptotic shape for the contact process in random environment[END_REF].

For every set A ⊂ B µp (0, 1), we denote by N nA,n the number of open paths starting from (0, 0), with length n and whose extremity lies in nA ∩ Z d . Theorem 1.2. Fix p > -→ p c alt (d + 1). There exists a concave function αp : Bµp (0, 1) -→ (0, log(p(2d + 1))],

with the same symmetries as the grid Z d , such that, for every set A such that Å = A ⊂ Bµp (0, 1), P p -almost surely,

lim n→+∞ 1 n log N nA,n = sup x∈A αp (x).
Since αp is even and concave, the constant αp (0) which appears in the statement of Theorem 1.1 is indeed the value of the function αp at 0. By considering, in Theorem 1.2, the set A = B µp (x, ε) for x ∈ Bµp (0, 1) and for a small ε, we see that αp (x) characterises the growth of the number of open paths with length n and prescribed slope x. Using the very same technics of proof, one could for instance prove the following directional convergence result. If x ∈ Z d , denote by N x,n the number of open paths from (0, 0) to (x, n):

Theorem 1.3. Fix p > -→ p c
alt (d+1) and (y, h) ∈ Z d ×N * such that µ p (y) < h. Extract from the sequence (ny, nh) the (random) subsequence, denoted ψ : N → N, of indices k such that (0, 0) → k.(y, h) . Then P p almost surely,

lim n→+∞ 1 ψ(n)h log N ψ(n).(y,h) = αp (y/h).
Take now as a random environment a realization of oriented percolation on Z d × N with parameter p such that 0 percolates. Once this random setting is fixed, choose a random open path with length n, uniformly among all open paths with length n, and ask for the behavior of the extremity of this random path. More precisely, for every set A with Å = A ⊂ Bµp (0, 1), the probability that the extremity of the random path stands in nA is N nA,n N n .

Then • Is αp strictly concave ? This would imply the previous statement.

• Does αp vanish when x tends to the boundary of Bµp (0, 1) ?

Organization of the paper. The key ideas of our proofs are the following. First, in Section 2, we recall results for supercritical oriented percolation, and we build the essential hitting times.

Then, in Section 3, we fix a vector (y, h) ∈ Z d × N * and we build an associated sequence of regenerating times (S n (y, h)) n (see Definition 3). These random times satisfy (0, 0) → (ny, S n (y, h)) → +∞ and have good invariance and integrability properties with respect to P p . We can thus apply Kingman's subbaditive ergodic theorem to obtain, in Lemma 3.2, the existence of the following limit:

1

S n (y, h) log(N ny,Sn(y,h) ) → α p (y, h).
Section 4 is devoted to the proof of Theorem 1.1. The asymptotic behavior of log(N n )/n should come from the "direction" (y, h) in which open paths are more abundant, i.e. in the "direction" (y, h) that maximizes α p (y, h). The key step to recover a full limit from the limit of a random subsequence is the continuity lemma 4.2: using the coupled zone, we prove in essence that two points close in Z d × N * and reached from (0, 0) by open paths should have similar number of open paths arriving to them.

Finally, in Section 5, the same ideas are used to prove Theorem 1.2. The arguments are however more intricate. That is why we chose to present an independent proof of Theorem 1.1 where to our opinion, each type of argument -regenerating time, coupling -appears in a simpler form. 

Preliminary results

Exponential estimates for supercritical oriented percolation.

We work with the oriented percolation model in dimension d + 1, as defined in the introduction. We set, for n ∈ N and x ∈ Z d ,

ξ x n = {y ∈ Z d : (x, 0) → (y, n)}, H x n = ∪ 0≤k≤n ξ x k , ξ Z d n = ∪ x∈Z d ξ x n , K ′x n = ∩ k≥n (ξ x k ∆ξ Z d k ) c , τ x = min{n ∈ N : ξ x n = ∅}. To simplify, we often write ξ n , τ, H n , K ′ n instead of ξ 0 n , τ 0 , H 0 n , K ′0 n .
For instance, τ is the length of the longest open path starting from the origin, and the percolation event is equal to {τ = +∞}. First, finite open paths cannot be too long (see Durrett [START_REF] Durrett | The contact process, 1974-1989[END_REF]):

(2) ∀p > -→ p c alt (d + 1) ∃A, B > 0 ∀n ∈ N P p (n ≤ τ < +∞) ≤ Ae -Bn .
The set K ′ n ∩ H n is called the coupled zone, and will play a central role in our proofs, by allowing to compare numbers of open paths with close extremities. As for the contact process, the growth of the sets (H n ) n≥0 and the coupled zones (K ′ n ∩ H n ) n≥0 is governed by a shape theorem and related large deviations inequalities: Proposition 2.1 (Large deviations inequalities, Garet-Marchand [START_REF] Garet | Large deviations for the contact process in random environment[END_REF]). Fix p > -→ p c alt (d + 1). For every ε > 0, there exist A, B > 0 such that,

∀n ≥ 1 P p B µp (0, (1 -ε)n) ⊂ (K ′ n ∩ H n ) + [0, 1] d ⊂ H n + [0, 1] d ⊂ B µp (0, (1 + ε)n) ≥ 1 -Ae -Bn . • (0, 0) • (x, n) • (y, 0) Figure 1. Coupled zone. If x is in the coupled zone K ′0
n , and is reached by an open path starting from some point (y, 0) ∈ Z d × {0} (in blue), then (0, 0) → (x, n) (in red).

Essential hitting times and associated translations.

We now introduce the analogues, in the discrete setting of oriented percolation, of the essential hitting times used by Garet-Marchand to study the supercritical contact process conditioned to survive in [START_REF] Garet | Asymptotic shape for the contact process in random environment[END_REF] and [START_REF] Garet | Large deviations for the contact process in random environment[END_REF]; we give their main properties in Proposition 2.2.

For a given x ∈ Z d , the essential hitting time will be a random time σ(x) such that

• P p almost surely, (0, 0) → (x, σ(x)) → ∞,

• the associated random translation of vector (x, σ(x)) leaves P p invariant. Thus σ(x) will be interpreted as a regenerating time of the oriented percolation conditioned to percolate.

We define a set of oriented edges

-→ E d of Z d in the following way: in (Z d , -→ E d ),
there is an oriented edge between two points z 1 and

z 2 in Z d if and only if z 1 -z 2 1 ≤ 1. The oriented edge in -→ E d+1 alt from (z 1 , n 1 ) to (z 2 , n 2 ) can be identified with the couple ((z 1 , z 2 ), n 2 ) ∈ -→ E d × N * . Thus, we identify -→ E d+1 alt and -→ E d × N * .
We also define, for (y, h) ∈ Z d × N, the translation θ (y,h) on Ω by:

θ (y,h) ((ω (e,k) ) e∈ - → E d ,k≥1 ) = (ω (e+y,k+h) ) e∈ - → E d ,k≥1 .
At some point, we will also need to look backwards in time. So, as set of sites, we replace Z d × N by Z d × Z, and we introduce the following reversed time translation defined on {0, 1} Z d ×Z by

θ ↓ (y,h) ((ω (e,k) ) e∈ - → E d ,k∈Z ) = (ω (e+y,h-k) ) e∈ - → E d ,k∈Z . Fix p > -→ p c alt (d + 1
). We now recall the construction of the essential hitting times and the associated translations introduced in [START_REF] Garet | Asymptotic shape for the contact process in random environment[END_REF]. Fix x ∈ Z d . The essential hitting time σ(x) is defined through a family of stopping times as follows: we set u 0 = v 0 = 0 and we define recursively two increasing sequences of stopping times (u n ) n≥0 and (v n ) n≥0 with u 0 = v 0 < u 1 < v 1 < u 2 . . . as follows:

• Assume that v k is defined. We set

u k+1 = inf{t > v k : x ∈ ξ 0 t }. If v k < +∞, then u k+1 is the first time after v k where x is once again infected; otherwise, u k+1 = +∞. • Assume that u k is defined, with k ≥ 1. We set v k = u k + τ 0 • θ (x,u k ) . If u k < +∞, the time τ 0 • θ (x,u k )
is the length of the oriented percolation cluster starting from (x, u k ); otherwise, v k = +∞. We then set

K(x) = min{n ≥ 0 : v n = +∞ or u n+1 = +∞}.
This quantity represents the number of steps before the success of this process: either we stop because we have just found an infinite v n , which corresponds to a time u n when x is occupied and has infinite progeny, or we stop because we have just found an infinite u n+1 , which says that after v n , site 0 is never infected anymore. It is not difficult to see that

P p (K(x) > n) ≤ P p (τ 0 < +∞) n ,
and thus K(x) is P p almost surely finite. We define the essential hitting time σ(x) by setting

σ(x) = u K(x) ∈ N ∪ {+∞}.
By construction (0, 0) → (x, σ(x)) → +∞ on the event {τ = +∞}. Note however that σ(x) is not necessarily the first positive time when x is occupied and has infinite progeny: for instance, such an event can occur between u 1 and v 1 , being ignored by the recursive construction. It can be checked that conditionally to the event {τ 0 = ∞}, the process necessarily stops because of an infinite v n , and thus σ(x) < +∞. At the same time, we define the operator θ on Ω, which is a random translation, by:

θx (ω) = θ (x,σ(x)) ω if σ(x) < +∞, ω otherwise. If (x 1 , . . . , x m ) is a sequence of points in Z d , we also introduce the shortened notation θx 1 ,...,xm = θxm • θxm-1 • • • • θx 1 .
For n ≥ 1, we denote by F n the σ-field generated by the maps (ω → ω (e,k) ) e∈ -→ E d ,1≤k≤n . We denote by F the σ-field generated by the maps (ω → ω (e,k) ) e∈

- → E d ,k≥1 . Proposition 2.2. Fix p > -→ p c alt (d + 1) and x 1 , . . . , x m ∈ Z d . a. Suppose A ∈ B(R), B ∈ F. Then for each x ∈ Z d , P p (σ(x) ∈ A, θ-1 x (B)) = P p (σ(x) ∈ A)P p (B). b. The probability measure P p is invariant under θx 1 ,...,xm . c. The random variables σ(x 1 ), σ(x 2 ) • θx 1 , σ(x 3 ) • θx 1 ,x 2 , . . . , σ(x m ) • θx 1 ,...,x m-1 are independent under P p . d. Suppose t ≤ m, A ∈ F t , B ∈ F P p (A, θ-1 x 1 ,...,xm (B)) = P p (A)P p (B). e. For every x ∈ Z d , µ p (x) = lim n→+∞ E p (σ(nx)) n = inf n≥1 E p (σ(nx)) n .
f. There exists α, β > 0 such that

∀x ∈ Z d E p (exp(ασ(x)) ≤ exp(β( x 1 ∨ 1)).
Proof. To prove a.-d., it is sufficient to mimic the proofs of Lemma 8 and Corollary 9 in [START_REF] Garet | Asymptotic shape for the contact process in random environment[END_REF]. The convergence e. has been proved for the contact process in [START_REF] Garet | Asymptotic shape for the contact process in random environment[END_REF], Theorem 22. The existence of exponential moments for σ has been proved for the contact process in [START_REF] Garet | Large deviations for the contact process in random environment[END_REF], Theorem 2.

Directional limits along subsequences of regenerating times

The essential hitting times have good regenerating properties, but by construction (see Proposition 2.2 e.), the vector (x, σ(x)) lies close to the border of the percolation cone {(y, µ p (y)) : y ∈ R d }. We now need to build new regenerating points such that the set of directions of these points is dense inside the percolation cone.

We define, for (y, h) ∈ Z d × N * , a new regenerating time s(y, h) by setting

s(y, h) = σ(y) + h i=1 σ(0) • θi-1 (0) • θ(y),
and the associated translation:

θ(y,h) (ω) = θ (y,s(y,h)) ω if s(y, h) < +∞, ω otherwise.
Note that on {τ = +∞}, (0, 0) → (y, s(y, h)) → +∞ and θ(y,h) = θy,0,...,0 (with h zeros). We can easily deduce from Proposition 2.2 the following properties of the time s(y, h) under P p :

Lemma 3.1. Fix p > -→ p c alt (d + 1), and (y, h) ∈ Z d × N * .
a. The probability measure P p is invariant under the translation θ(y,h) . b. The random variables (s(y, h) • ( θ(y,h) ) j ) j≥0 are independent and identically distributed under P p . c. The measure-preserving dynamical system (Ω, F, P p , θ(y,h) ) is mixing. d. There exists α, β > 0 such that

∀y ∈ Z d ∀h ∈ N * E p (exp(αs(y, h))) ≤ exp(β(( y 1 ∨ 1) + h)).
We fix (y, h) ∈ Z d × N * . We work under P p , and we set, for every n ≥ 1,

S n = S n (y, h) = n-1 k=0 s(y, h) • θk (y,h) . ( 3 
)
The points (ny, S n (y, h)) n≥1 are the sequence of regenerating points associated to (y, h) along which we are going to look for subadditivity properties. As, under P p , the random variables (s(y, h) • θj (y,h) ) j≥0 are independent and identically distributed with finite first moment (see Lemma 3.1), the strong law of large numbers ensures that P p -almost surely [START_REF] Fukushima | On exponential growth for a certain class of linear systems[END_REF] lim

n→+∞ S n (y, h) n = E p (s(y, h)) = E p (σ(y)) + hE p (σ(0)).
Thus, for large n, the point (ny, S n (y, h)) is not far from the line R(y, E p (s(y, h))).

To obtain directional limits along subsequences, we first apply Kingman's subadditive ergodic theorem to f n = -log N (ny,Sn(y,h)) for a fixed (y, h) ∈

Z d × N * . Lemma 3.2. Fix p > -→ p c alt (d + 1
) and (y, h) ∈ Z d × N * . There exists α p (y, h) ∈ (0, log(2d + 1)] such that P p -almost surely and in L 1 (P p ),

lim n→+∞ 1 S n (y, h) log N (ny,Sn(y,h)) = α p (y, h). Proof. Fix (y, h) ∈ Z d × N * .
To avoid heavy notations, we omit all the dependence in (y, h). For instance S n = S n (y, h) and θ = θ(y,h) . Note that by definition, P p -almost surely, for every n ≥ 1, (0, 0) → (ny, S n ) → +∞ and consequently, N (ny,Sn) ≥ 1. For n ≥ 1, we set

f n = -log N (ny,Sn) .
Let n, p ≥ 1. Note that S n + S p • θn (y,h) = S n+p . As N (py,Sp) • θn counts the number of open paths from (ny, S n ) to ((n+p)y, S n +S p • θn ), concatenation of paths ensures that N (ny,Sn) × N (py,Sp) • θn ≤ N ((n+p)y,S n+p ) which implies that ∀n, p ≥ 1

f n+p ≤ f n + f p • θn . As 1 ≤ N (ny,Sn) ≤ (2d + 1) Sn , -S n log(2d + 1) ≤ f n ≤ 0.
The integrability of s thus implies the integrability of every f n . So we can apply Kingman's subadditive ergodic theorem. By property c. in Lemma 3.1, the dynamical system (Ω, F, P, θ) is mixing. Particularly, it is ergodic, so the limit is deterministic: if we define

-α ′ p (y, h) = inf n≥1 E p (f n ) n ,
we have P p -almost surely and in L 1 (P p ): lim n→+∞ f n n = -α ′ p (y, h). The limit of the lemma follows then directly from (4) by setting

α p (y, h) = α ′ p (y, h) E p s

(y, h) .

Finally α ′ p (y, h) ≥ E p (-f 1 ) = E p (log N (y,S 1 ) ). Since N (y,S 1 ) ≥ 1 P p -a.s. and N (y,S 1 ) ≥ 2 with positive probability, it follows that α ′ p (y, h) > 0, and consequently α p (y, h) > 0.

As N (ny,Sn) ≤ (2d + 1) Sn , we see that α p (y, h) ≤ log(2d + 1) and that the convergence also holds in L 1 (P p ).

We can now introduce a natural candidate for the limit in Theorem 1.1:

(5)

α p = sup α p (y, h) : (y, h) ∈ Z d × N * < +∞.
Indeed, at the logarithmic scale we are working with, we can expect that the dominant contribution to the number N n of open paths to level n will be due to the number N nz,n of open paths to level n in the direction (z, 1) that optimizes the previous limit. Note however that in our construction, (y, h) has no real geometrical signification, but it is just a useful encoding: as said before, the asymptotic direction of the regenerating point (ny, S n (y, h)) in

Z d × N is y E p (s(y, h) , 1 .
To skip from the subsequences to the full limit, we approximate B µp (0, 1) with a denumerable set of points: let ( 6)

D p = y E p (s(y, h)) : y ∈ Z d , h ∈ N * .
Lemma 3.3. For every p > -→ p c alt (d + 1), B µp (0, 1) ⊂ D p .

Proof. Note that the set {z/l : (z, l) ∈ Z d × N * and µ p (z) < l} is dense in B µp (0, 1). Thus fix (z, l) ∈ Z d × N * such that µ p (z) < l and consider

(y n , h n ) = nz, n(l -µ p (z) E p (σ(0)) ∈ Z d × N * . Then y n E p (s(y n , h n )) = nz E p (σ(y n )) + h n E p (σ(0)) → z l
as n goes to +∞.

Finally, for (y, h) ∈ Z d × N * , we denote by

∀n ∈ N ϕ(n) = ϕ (y,h) (n) = inf{k ∈ N : S k (y, h) ≥ n}. (7)
Thus, for large n, (ϕ(n).y, S ϕ(n) ) is the first point among the sequence of regenerating points associated to (y, h) to be above level n. By the renewal theory, P p almost surely, [START_REF] Kesten | A problem in last-passage percolation[END_REF] lim

n→+∞ ϕ (y,h) (n) n = 1 E p (s(y, h)) and lim n→+∞ S ϕ (y,h) (n) (y, h) n = 1.
It is also not too far above level n: Proof. Fix ε > 0 and η ∈ (0, 1). We first approximate B µp (0, 1) with a finite number of points: with Lemma 3.3, we can find a finite set

Lemma 3.
F ⊂ Z d × N * such that B µp (0, 1 + ε) ⊂ (y,h)∈F B µp (1 + ε)y E p (s(y, h)) , (1 -η)ε/2 .
Then, for n large, we will control the number N n using these directions. We define M n (y, h) as the first point in the sequence (ky, S (y,h) (k)) k≥1 of regerating points associated to (y, h) to be above level n(1 + ε). Using the notation introduced in ( 7), we set

∀(y, h) ∈ F k n = k n (y, h) = ϕ (y,h) (n(1 + ε)), Z n = Z n (y, h) = k n .y ∈ Z d , V n = V n (y, h) = S kn (y, h) ∈ N, M n = M n (y, h) = (Z n , V n ).
For a given (y, h) ∈ F , the law of large numbers [START_REF] Kesten | A problem in last-passage percolation[END_REF] says that

k n (y, h) ∼ n(1 + ε) E p (s(y, h)) and V n (y, h) ∼ n(1 + ε). ( 9 
)
So P p almost surely, for all n large enough

∀(y, h) ∈ F B µp (1 + ε)ny E p (s(y, h)) , (1 -η)εn/2 ⊂ B µp (Z n (y, h), (1 -η)εn) .
It follows then from the shape theorem (1), that P p almost surely, for all n large enough ( 10)

ξ n ⊂ B µp (0, (1 + ε)n) ⊂ ∪ (y,h)∈F B µp (Z n (y, h), (1 -η)εn) .
The strategy is to prove that for n large enough, for each x ∈ B µp (0, n(1+ε)), the n first steps of an open path that goes from (0, 0) to (x, n) and then to infinity are also the n first steps of an open path which contributes to N Mn(y,h) for any (y, h) ∈ F such that x ∈ B µp (Z n (y, h), (1 -η)εn). To do so, we will use the coupled zone. Note

G n = ∩ M ∈{-2n,...,2n} d ×{0,...,2n} τ < n(1 + ε) or K ′ nε ⊃ B µp (0, (1 -η)εn) ∩ Z d • θ ↓ M .
Since θ ↓ M preserves P p , we easily deduce from (2), Proposition 2.1 and a Borel-Cantelli argument that P p almost surely, G n holds for every n large enough. Now take n large enough such that (10) holds, G n holds, together with V n (y, h) ≤ 2n for each (y, h) ∈ F , which is possible thanks to [START_REF] Lacoin | Existence of an intermediate phase for oriented percolation[END_REF].

Fix x ∈ ξ n such that (x, n) → ∞. As (10) holds, choose (y, h) ∈ F such that x ∈ B µp (Z n (y, h), (1 -η)εn). Since (0, 0) → M n and

V n ≥ n(1 + ε), we know that τ • θ ↓ Mn ≥ n(1 + ε). Since M n ∈ {-2n, . . . , 2n} d × {0, . . . , 2n}, µ p (x -Z n ) ≤ (1 -η)εn and G n holds, we have x -Z n ∈ K ′ nε • θ ↓ Mn . Note that V n (y, h) ≥ n(1 + ε), so V n (y, h) -n ≥ εn. Note also that (x, n) → ∞ implies that x -Z n ∈ ξ Z d Vn(y,h)-n • θ ↓ Mn .
By definition of the coupled zone, we have x -Z n ∈ ξ 0 Vn(y,h)-n • θ ↓ Mn . Going back to the initial orientation, it means that (x, n) → M n . So, if γ is a path from (0, 0) to (x, n), it is clear that γ is the restriction of a path that goes from (0, 0) to M n , and then to infinity. Then,

N n ≤ (y,h)∈F N Mn(y,h) .
Next, we use the directional limits given by Lemma 3.2: P p almost surely,

∀(y, h) ∈ F lim n→+∞ 1 V n (y, h) log N Mn(y,h) = α p (y, h).
As V n (y, h) ∼ n(1+ε), we obtain from the shape theorem (1) that P p almost surely, for all n large enough

∀(y, h) ∈ F 1 n(1 + ε) log N Mn(y,h) ≤ α p (y, h) + ε ≤ α p + ε. (0, 0) (x, n) M n = (Z n , V n ) coupled zone of M n asymptotic direction n(1 + ε) n 0 Figure 2.
Red paths are the part above n of paths from (0, 0) to infinity. Green paths are the part above n of paths from (0, 0) to infinity that meet some M n . To bound N n , we prove that each start of a red path is the start of a green path.

So, for n large enough, we have P p almost surely,

N n ≤ (y,h)∈F N Mn(y,h) ≤ |F | exp((α p + ε)n(1 + ε)), so lim n→+∞ 1 n log(N n ) ≤ (1 + ε)(α p + ε).
We complete the proof by letting ε go to 0. Proof. Fix 0 < ε < 1 and define, for n ≥ 1, the following event

E n = ∩ z 1 ≤n {τ < εn or τ = +∞} • θ (z,⌊n(1-ε)⌋) .
Assume that E n occurs. Consider a path γ = (γ i , i) 0≤i≤n from (0, 0) to

Z d × {n} and set z = γ ⌊n(1-ε)⌋ : as τ • θ (z,⌊n(1-ε)⌋) ≥ εn, the event E n implies that τ • θ (z,⌊n(1-ε)⌋) = +∞. So (γ i , i) 0≤i≤⌊n(1-ε)⌋ contributes to N ⌊n(1-ε)⌋
and thus, on E n ,

N n ≤ (2d + 1) εn+1 N ⌊n(1-ε)⌋ , so 1 n log N n ≤ ε + 1 n log(2d + 1) + 1 n log N ⌊n(1-ε)⌋ ≤ ε + 1 n log(2d + 1) + 1 ⌊n(1 -ε)⌋ log N ⌊n(1-ε)⌋ .
The exponential estimate (2) ensures that

∀n ≥ 1 P p (E c n ) ≤ C d An d exp(-Bεn) ≤ A ′ exp(-B ′ n).
With the Borel-Cantelli lemma, this leads to:

lim n→+∞ 1 n log N n ≤ ε log(2d + 1) + lim n→+∞ 1 n log N n .
By taking ε to 0, we obtain

lim n→+∞ log N n n ≤ lim n→+∞ log N n n .
The proof for the inequality with lim instead of lim is identical. Since N n ≤ N n , the reversed inequalities are obvious.

5. Proof of Theorem 1.2 5.1. Construction and continuity of αp . Recall that D p was defined in [START_REF] Garet | Large deviations for the contact process in random environment[END_REF]. Our strategy is to prove that the identity αp y E p (s(y, h))

= α p (y, h).

defines a map on D p that is uniformly continuous on every compact subset of D p ∩ Bµ (0, 1). We first refine the argument of Lemma 4.2 implying the coupled zone:

Lemma 5.1. Let β ∈ (0, 1). There exists α > 0 such that the following holds. For every ε > 0, for every x1 , x2 ∈ B µp (0, 1 -β), if

µ p (x 1 -x2 ) ≤ αε,
then for any sequences of points

(M 1 n = (Z 1 n , V 1 n )) n and (M 2 n = (Z 2 n , V 2 n )) n in Z d × N * , for any C > 0 such that, P p almost surely, Z 1 n V 1 n → x1 and V 1 n n → C(1 + ε), Z 2 n V 2 n → x2 and V 2 n n → C,
we have the following property: P p almost surely, for every n large enough, if (0, 0)

→ (Z 1 n , V 1 n ) and (0, 0) → (Z 2 n , V 2 n ) → ∞, then N (Z 2 n ,V 2 n ) ≤ N (Z 1 n ,V 1 n ) . Proof. Fix small α, η > 0 and a large integer K ≥ 3 such that α + (1 -β) < K -2 K (1 -η). Fix ε > 0. Set ε ′ = ε/K. µ p Z 2 n Cn - Z 1 n Cn ≤ µ p Z 2 n V 2 n V 2 n Cn -1 + µ p Z 2 n V 2 n -x2 + µ p (x 2 -x1 ) +µ p x1 - Z 1 n V 1 n + µ p Z 1 n V 1 n V 1 n Cn -1 . So P almost surely, lim n→+∞ µ p Z 2 n Cn - Z 1 n Cn ≤ (α + 1 -β) ε < K -2 K (1 -η)ε,
so P almost surely, for every n large enough, (11)

µ p Z 2 n Cn - Z 1 n Cn ≤ K -2 K (1 -η)ε = (K -2)(1 -η)ε ′ .
By the convergences for the V i n /n, we know that P p almost surely, for every n large enough, ( 12)

|V 1 n -Cn(1 + ε)| ≤ Cnε ′ and |V n -Cn| ≤ Cnε ′ . Define G n = {∀x ∈ [-Cn(1 + 2ε), Cn(1 + 2ε)] d ∀k ∈ [Cn(1 + ε -ε ′ ), Cn(1 + ε + ε ′ )] (τ • θ ↓ (x,k) ≥ ε ′ Cn) ⇒ ∀m ≥ ε ′ Cn B µp (0, x, (1 -η)m) ⊂ K′ m • θ ↓ (x,k) }.
With the large deviations for the coupled zone given in Proposition 2.1, there exist A, B > 0 such that ∀n large enough P p (G c n ) ≤ A exp(-Bn). Thus, the Borel-Cantelli lemma ensures that P p (lim

G n ) = 1.
Assume then that τ 0 = +∞. P p almost surely, for every n large enough, we know that (11), (12) and G n occur. Assume that, for one of these large enough n, (0, 0)

→ (Z 1 n , V 1 n ) and (0, 0) → (Z 2 n , V 2 n ) → ∞. Note that V 1 n -V 2 n ≥ Cn(1 + ε -ε ′ ) -Cn(1 + ε ′ ) ≥ Cn(K -2)ε ′ . So, on the event G n , as (0, 0) → (Z 1 n , V 1 n ), we see that τ • θ ↓ M 1 n ≥ ε ′ Cn, so K V 1 n -V 2 n • θ ↓ M 1 n ⊃ B µp (Z 1 n , (1 -η)C(K -2)nε ′ ).
So, with (11), we see that

Z 2 n ∈ K V 1 n -V 2 n • θ ↓ M 1 n . As (Z 2 n , V 2 n ) → ∞, then (Z 2 n , V 2 n ) → (Z 1 n , V 1 n ), which gives an injection from the set of open paths from (0, 0) to (Z 2 n , V 2 n ) into the set of open paths from (0, 0) to (Z 1 n , V 1 n ).
For (y, h) ∈ Z d × N * , we define M n (y, h) as the first point in the sequence (ky, S (y,h) (k)) of regerating points associated to (y, h) to be above level n (see Definition [START_REF] Hsu | Complete convergence and the law of large numbers[END_REF]):

k n = k n (y, h) = ϕ (y,h) (n), Z n = Z n (y, h) = k n .y ∈ Z d and V n = V n (y, h) = S kn (y, h) ∈ N, M n = M n (y, h) = (Z n , V n ).
The law of large numbers (8) says that P p almost surely,

Z n (y, h) n = k n (y, h).y n ∼ y E p (s(y, h)) and V n n ∼ 1.
The next lemma is a first step toward continuity.

Lemma 5.2. Let β ∈ (0, 1). There exists α > 0 such that, for every ε > 0, for every (y 1 , h 1 ), (y 2 , h 2 ) ∈ Z d × N * such that

µ p y 1 E p (s(y 1 , h 1 )) ≤ 1 -β and µ p y 2 E p (s(y 2 , h 2 )) ≤ 1 -β, if µ p y 1 E p (s(y 1 , h 1 )) - y 2 E p (s(y 2 , h 2 ))
≤ αε,

then |α p (y 1 , h 1 ) -α p (y 2 , h 2 )| ≤ ε.
Proof. Take, for every n, (Z

1 n , V 1 n ) = M n(1+ε) (y 1 , h 1 ) and (Z 2 n , V 2 n ) = M n (y 2 , h 2 )
. With the previous Lemma, we obtain

N Mn(y 2 ,h 2 ) ≤ N M n(1+ε) (y 1 ,h 1 ) , 1 V n (y 2 , h 2 ) log N Mn(y 2 2 ) ≤ H n(1+ε) (y 1 , h 1 ) V n (y 2 , h 2 ) 1 H n(1+ε) (y 1 , h 1 ) log N M n(1+ε) (y 1 ,h 1 ) , α p (y 2 , h 2 ) ≤ (1 + ε)α p (y 1 , h 1 ).
Exchanging the roles of the (y i , h i ), we obtain |α p (y 2 , h 2 ) -α p (y 1 , h 1 )| ≤ ε log(2d + 1).

We define the following equivalence relation of the points in

Z d × N * : (y 1 , h 1 ) ∼ (y 2 , h 2 ) ⇔ y 1 E p (s(y 1 , h 1 )) = y 2 E p (s(y 2 , h 2 ))
.

Lemma 5.2 ensures that if (y 1 , h 1 ) ∼ (y 2 , h 2 ), then α p (y 1 , h 1 ) = α p (y 2 , h 2 ). We can thus define on the quotient set of directions D p , defined in (6), the following directional limit:

αp y E p (s(y, h)) = α p (y, h).
Lemma 5.2 ensures that the application αp is uniformly continuous on each D p ∩ B µp (0, (1 -β)). Note that the α given by Lemma 5.2 gives an upper bound for its modulus of continuity. As, with Lemma 3.3, D p ∩ B µp (0, (1β)) is dense in the compact set B µp (0, (1 -β)), we can extend αp to any B µp (0, (1 -β)), and then to Bµp (0, 1).

Concavity.

Lemma 5.3. The application αp is concave on Bµp (0, 1).

Proof. Fix β ∈ (0, 1), and consider ŷ, ŷ′ ∈ D p ∩ B µp (0, (1 -β)). There exist (y, h), (y

′ , h ′ ) ∈ Z d × N such that s = E p (s(y, h)) s ′ = E p (s(y ′ , h ′ )), ŷ = y E p (s(y, h)) = y s ŷ′ = y ′ E p (s(y ′ , h ′ )) = y ′ s ′ .
Let α be given by Lemma 5.1. Let λ ∈ (0, 1) and ε > 0. Writing, for k, k ′ ≥ 1:

ky + k ′ y ′ ks + k ′ s ′ = ks ks + k ′ s ′ ŷ + k ′ s ′ ks + k ′ s ′ ŷ′ ∈ B µp (0, 1 -β),
we can choose k, k ′ ≥ k 0 such that :

µ p ky + k ′ y ′ ks + k ′ s ′ -λŷ + (1 -λ ′ )ŷ ′ ≤ αε,
and

ks αp (ŷ) + k ′ s ′ αp (ŷ ′ ) ks + k ′ s ′ ≥ 1 1 + ε λα p (ŷ) + (1 -λ)α p ŷ′ .
In particular, the uniform continuity of αp on B µp (0, 1 -β) ensures that

(13) αp ky + k ′ y ′ ks + k ′ s ′ ≤ α p λŷ + (1 -λ)ŷ ′ + ε.
By Lemma 3.3, we can choose (y ′′ , h ′′ ) ∈ Z d × N * such that (with the same notation):

µ p ŷ′′ - ky + k ′ y ′ ks + k ′ s ′ ≤ αε and µ p ŷ′′ ≤ 1 -β.
In particular, the uniform continuity of αp on B µp (0, 1 -β) and (13) ensure that

(14) αp (ŷ ′′ ) ≤ αp ky + k ′ y ′ ks + k ′ s ′ + ε ≤ α p λŷ + (1 -λ)ŷ ′ + 2ε.
For every n ≥ 1, set

Z 2 n = nky + nk ′ y ′ , V 2 n = S kn (y, h) + S k ′ n (y ′ , h ′ ) • θkn (y,h)
By the law of large numbers, S kn (y, h)/n and S k ′ n (y ′ , h ′ )/n almost surely converge, respectively, to ks ans k ′ s ′ . Since s(y ′ , h ′ ) ∈ L 2 (P p ), complete convergence actually occurs (see e.g. Hsu-Robbins [START_REF] Hsu | Complete convergence and the law of large numbers[END_REF]), so, since the θ operators leave P p invariant, we get the following P p almost sure convergences:

V 2 n n → ks + k ′ s ′ and Z 2 n V 2 n → ky + k ′ y ′ ks + k ′ s ′ . Note that (0, 0) → (nky, S kn (y, h)) → (Z 2 n , V 2 n ) → +∞. In particular, N Z 2 n ,V 2 n ≥ N nky,S kn (y,h) × N Z 2 n ,V 2 n • θkn (y,h) , log N Z 2 n ,V 2 n n(ks + k ′ s ′ ) ≥ nks n(ks + k ′ s ′ ) log N nky,S kn (y,h) nks + nk ′ s ′ n(ks + k ′ s ′ ) N nk ′ y ′ ,S k ′ n (y ′ ,h ′ ) nk ′ s ′ • θkn (y,h) .
Using the L 1 convergence in the subadditive lemma 3.2, we then obtain

lim E p log N Z 2 n ,V 2 n n(ks + k ′ s ′ ) ≥ ks ks + k ′ s ′ αp (ŷ) + k ′ s ′ ks + k ′ s ′ αp (ŷ ′ ) ≥ λα p (ŷ) + (1 -λ)α p (ŷ ′ ) 1 + ε . (15) For every n ≥ 1, we now set (Z 1 n , V 1 n ) = M (ks+k ′ s ′ )n(1+ε) (y ′′ , h ′′ ).
We have the following P p almost sure convergence:

V 1 n n → (1 + ε)(ks + k ′ s ′ ) and Z 1 n V 1 n → y ′′ s ′′ .
By Lemma 5.1 we get, P p almost surely, for large enough n:

(16) N (Z 2 n ,V 2 n ) ≤ N (Z 1 n ,V 1 n ) . With the L 1 convergence in Lemma 3.2 we get that : lim n→+∞ E p 1 n(ks + k ′ s ′ ) log N (Z 1 n ,V 1 n ) = (1 + ε)α p (ŷ ′′ ).
With ( 14), ( 15) and ( 16), we obtain

(1+ε) α p λŷ + (1 -λ)ŷ ′ + 2ε ≥ (1+ε)α p (ŷ ′′ ) ≥ λα p (ŷ) + (1 -λ)α p (ŷ ′ ) 1 + ε .
Letting ε tend to 0, we get the concavity of αp on D p ∩ B µp (0, (1 -β)). Since αp is continuous, a density argument completes the proof. 

∈ Z d × N such that ŷ = y E p (s(y, h)) ∈ B(x, 4ε).
We define M n (y, h) as the first point in the sequence (ky, S (y,h) (k)) k≥1 of regerating points associated to (y, h) to be above level n(1 -ε). Using the notation introduced in (7), we set

∀(y, h) ∈ F k n = k n (y, h) = ϕ (y,h) (n(1 -ε)), Z n = Z n (y, h) = k n .y ∈ Z d and V n = V n (y, h) = S kn (y, h) ∈ N, M n = M n (y, h) = (Z n , V n ).
The law of large numbers [START_REF] Kesten | A problem in last-passage percolation[END_REF] says that

Z n (y, h) ∼ n(1 -ε)ŷ and V n (y, h) ∼ n(1 -ε). (17) Note G n = M ∈Bµ p (n(1-ε)ŷ,εn)×[n(1-ε)..n(1-ε/2)], k≥εn/2 {ξ 0 k ⊂ B µp (0, (1 + ε)k)} • θ M .
Since θ M preserves P p , we easily deduce from (2), Proposition 2.1 and a Borel-Cantelli argument that P p almost surely, G n holds for n large enough. Now take n large enough such that G n holds and, with (17), Z n ∈ B µp (n(1 -ε)ŷ, εn) and (1 -ε)n ≤ V n ≤ (1 -ε/2)n, so that εn/2 ≤ n -V n ≤ εn. Then G n ensures that (ε < 1) ξ Zn n-Vn ⊂ B µp (Z n , (1 + ε)εn) ⊂ B µp (n(1 -ε)ŷ, 3εn) ⊂ B µp (nŷ, 4εn) ⊂ n Å. So N Mn ≤ N nA,n , and then

1 n log N nA,n ≥ V n n 1 V n log N Mn .
With (17) and Lemma 3.2, we deduce that P p almost surely,

lim n→+∞ 1 n log N nA,n ≥ 1 1 -ε α p (ŷ) ≥ 1 1 -ε L.
Letting ε going to 0 completes the proof. Proof. The proof is a refinement of that of Lemma 4.2. Let δ > 0. Since A is a compact subset of Bµ (0, 1) and z → αp (z) is continuous on Bµ (0, 1), one can find ε ∈ (0, 1) such that sup A+Bµ p (0,2ε) αp ≤ δ + sup A αp . Now take η > 0 and F as defined in the proof of Lemma 4.2 and note αp ≤ δ + sup A αp .

F B = (
We complete the proof by letting δ go to 0. As before, a Borel-Cantelli argument ensures that P p -almost surely, G n occurs for every large enough n. Assume that G n occurs. Consider a path γ = (γ i , i) 0≤i≤n from (0, 0) to nA × {n} and set z = γ ⌊n(1-ε)⌋ : as τ • θ (z,⌊n(1-ε)⌋) ≥ εn, the event G n implies that τ • θ (z,⌊n(1-ε)⌋) = +∞. Looking backwards in time, we see that all these z are in nA + B µp (0, 2εn). So (γ i , i) 0≤i≤⌊n(1-ε)⌋ contributes to N nA+Bµ p (0,2εn),⌊(1-ε)n⌋ and thus, on G n , N nA,n ≤ (2d + 1) εn+1 N nA+Bµ p (0,2εn),⌊(1-ε)n⌋ , This completes the proof.

Olivier Garet and Régine Marchand would like to warmly thank Matthias Birkner and Rongfeng Sun for pointing out an error in a previous version of the paper.
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  Consider supercritical oriented percolation on Z d × N. Let N (a, b) denote the number of open paths from a to b. By concatenation of paths we get N (a, c) ≥ N (a, b)N (b, c). In other words, the following superadditivity property holds: log N (a, c) ≥ log N (a, b) + log N (b, c).

  alt , where Ber(p) stands for the Bernoulli law of parameter p. For a configuration ω = (ω e ) e∈ -→ E d+1 alt ∈ Ω, say that the edge e ∈ -→ E d+1 alt is open if ω e = 1 and closed otherwise. A path is said open in the configuration ω if all its edges are open in ω. For two sites (v, m), (w, n) in Z d × N, we denote by {(v, m) → (w, n)} the existence of an open path from (v, m) to (w, n). By extension, we denote by {(v, m) → +∞} the event that there exists an infinite open path starting from (v, m).

Theorem 1 . 1 . 1 n

 111 Let p > -→ p c alt (d + 1). There exists a strictly positive constant αp (0) such that, P p -almost surely and in L 1 (P p ), lim n→+∞ log N n = αp (0).

Notation.

  For n ≥ 1, x ∈ Z d and any set A ⊂ R d , we denote by • N n the number of open paths from (0, 0) to Z d × {n}, • N n the number of open paths from (0, 0) to Z d × {n} that are the beginning of an infinite open path, • N x,n the number of open paths from (0, 0) to (x, n), • N A,n the number of open paths from (0, 0) to (A ∩ Z d ) × {n}.

Finally, we proveLemma 4 . 3 .

 43 that working with open paths or with open paths that are the beginning of an infinite open path is essentially the same: P p -almost surely,

Lemma 5 . 5 . 1 n

 551 For every non-empty set A such that A ⊂ Bµp (0, 1), P p -almost surely, lim n→+∞ log N nA,n ≤ sup x∈A αp (x).

5. 4 . 4 .

 44 Proof of Theorem 1.It remains to skip from N nA,n to N nA,n . Fix 0 < ε < 1 and define, for n ≥ 1, the following eventG n = ∩ z 1 ≤n {τ < εn or τ = +∞} • θ (z,⌊n(1-ε)⌋) ∩ ∩ z 1 ≤n {K ′ εn ⊂ B µp (0, 2εn)} • θ ↓ (z,n) .

so 1 n

 1 log N nA,n ≤ ε + 1 n log(2d + 1) + 1 n log N nA+Bµ p (0,2εn),⌊(1-ε)n⌋ . Now, we first use Lemma 5.5 and take the lim, and then we use the continuity of αp and let ε go to 0: lim n→+∞ log N nA,n n ≤ ε log(2d + 1) + sup x∈A+Bµ p (0,2ε) N nA,n ≤ N nA,n , with Lemma 5.4 we obtain that lim n→+∞ log N nA,n n = sup x∈A αp (x).

  Fix p > -→ p c alt (d+1). The proof of the almost sure convergence in Theorem 1.1 is a direct consequence of the forthcoming Lemmas 4.1, 4.2 and 4.3. The L 1 convergence follows from the remark that 1 n log N n ≤ log(2d + 1). Remember that α p is defined in[START_REF] Garet | Asymptotic shape for the contact process in random environment[END_REF].

	As s(y, h) admits exponential moments thanks to Lemma 3.1, we can con-
	clude with the Markov inequality.			
		4. Proof of Theorem 1.1	
	Lemma 4.1. P p -almost surely, lim			
	1 n	log N n ≥	1 S k+1	log N S k ≥	S k S k+1	log N (ky,S k ) S k	.

4.

For every (y, h) ∈ Z d × N * , there exist positive constants A, B such that

∀n ∈ N P(S ϕ (y,h) (n) -n ≥ n) ≤ A exp(-Bn).

Proof. As we work in discrete time, ϕ(n) ≤ n. So

P p (S ϕ(n) -n ≥ n) ≤ P p (∃k ≤ n : s(y, h) • θk (y,h) ≥ n) ≤ nP p (s(y, h) ≥ n). n→+∞ 1 n log N n ≥ α p . Proof. Take (y, h) ∈ Z d × N * . Note that (N n ) n≥1 is

non-decreasing, and considering the increasing sequence S k = S k (y, h), we see that, P p almost surely, for every integer n such that S k ≤ n ≤ S k+1 , With (4) and Lemma 3.2, we deduce that P p almost surely, lim n→+∞ 1 n log N n ≥ α p (y, h), which completes the proof. Lemma 4.2. P p -almost surely, lim n→+∞ 1 n log N n ≤ α p .

  y, h) ∈ F : y E p (s(y, h)) ∈ B . Now consider x ∈ nA. Since nA ⊂ B µp (0, n(1 + ε)), for n large enough, we can find (y, h) ∈ F such that x/n ∈ B µp A+Bµ p (0,2ε) . Now, following the proof of Lemma 4.2, for n large enough, for each x ∈ nA, the n first steps of an open path that goes from (0, 0) to (x, n) and then to infinity are also the n first steps of an open path which contributes to N Mn(y,h) for any (y, h) ∈ F A+Bµ p (0,2ε) , which gives N nA,n ≤ (y,h)∈F A+Bµ p (0,2ε) N Mn(y,h) .

	(18)							
	As previously, we get					
	lim n→+∞	1 n	log(N nA,n ) ≤	sup F A+Bµ p (0,2ε)	α p ≤	sup A+Bµ p (0,2ε)
									(1+ε)y Ep(s(y,h)) , (1 -η)ε/2 . We have
	µ p	y E p (s(y, h))	-	x n	≤ µ p (1 + ε)	y E p (s(y, h))	-(1 + ε)	x n
							≤ µ p	(1 + ε)y E p (s(y, h))	-	x n	+ εµ p (x/n)
							≤ (1 -η)ε/2 + εµ p (x/n) ≤ 2ε.

Since x/n ∈ A, we get (y, h) ∈ F