$L^{\infty}$-estimates for the Vlasov-Poisson-Fokker-Planck equation.
Résumé
We consider the Vlasov-Poisson-Fokker-Planck equation, in three dimensions, as the backward Kolmogorov equation associated with a nonlinear diffusion process. In this way, we derive new $L^{\infty}$-estimates on the spatial density, which are uniform in the diffusion parameters.
Origine | Fichiers produits par l'(les) auteur(s) |
---|