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L
∞-estimates for the

Vlasov-Poisson-Fokker-Planck equation

M. Pulvirenti, C. Simeoni

Dipartimento di Matematica - Università di Roma ”La Sapienza”

Piazzale Aldo Moro, 5 - 00185 Roma - Italy

Abstract

We consider the Vlasov-Poisson-Fokker-Planck equation, in three dimen-

sions, as the backward Kolmogorov equation associated with a nonlinear

diffusion process. In this way, we derive new L
∞-estimates on the spatial

density, which are uniform in the diffusion parameters.

1 Introduction

The Vlasov-Poisson-Fokker-Planck (VPFP) equation is an evolution equation
which describes the dynamics of a plasma of Coulomb particles in a thermal
reservoir (see Eq.s (1)-(4) in the following section). When the action of the
reservoir is neglected (i.e. β = σ = 0), we have the well-known Vlasov-Poisson
(VP) equation.

The specific difficulty encountered in solving the Cauchy problem associated
with the VP equation relies on the singularity of the potential term; such a
difficulty is increasing with the dimension of the physical space.
In dimension three, the problem was relatively recently solved in Ref.s [6], [11],
[12] and [14] by performing a careful analysis of the behaviour of the charac-
teristics and in Ref.[7] by means of a control on the velocity moments of the
distribution function. As a matter of fact, the method of the first group of
references produces a control on the spatial density ρ in L∞-norm, while the
second approach yields an Lp, 1<p <+∞ control. Both kinds of control ensure
sufficient regularity properties of the potential field E, to construct uniquely the
solution.

Coming back to the Cauchy problem for the VPFP equation, one expects
that this last problem should be easier to treat. Indeed, a diffusion term (even
though it is degenerate, because it involves only the velocity variables) should
regularize the behaviour of the solutions. Nevertheless, if one tries to get esti-
mates on the spatial density, which are uniform in the diffusion parameters β
and σ, one is faced at least with the same difficulties as for the VP equation.
Bouchut (see Ref.s [1] and [2]) used the “propagation of moments” techniques
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from Ref.[7] to construct the solution to the VPFP initial value problem. Vari-
ous contributions to the VPFP problem have also appeared to deal with different
situations (see e.g. [3] and its references).

The purpose of the present paper is to approach the VPFP equation in the
same spirit as in Ref.s [6], [11], [12] and [14], namely by controlling the be-
haviour of the characteristics which are the solutions of the ordinary differential
equation underlying the VP equation. In our case, however, due to the pres-
ence of a diffusion term, we are quite naturally lead to consider a stochastic
differential equation rather than an ordinary differential problem. This idea
in not completely new: it goes back to McKean (see Ref.[9]) and it has been
successfully applied to the VPFP equation in the much easier two-dimensional
case (see Ref.[10]).
We must comment that, due to the fact that the diffusion coefficient in Eq.(1)
is constant, the stochastic content of this work is poor (the only property of
diffusion processes we need is a standard and rather elementary feature of the
Brownian motion).
In conclusion, the interest of our approach is two-fold: from one side, we present
an alternative method to solve the VPFP initial value problem; from the other
one, we obtain L∞-estimates (uniform in β and σ) on the spatial density in
Eq.(3) which are, as far as we know, new.

2 Preliminaries

We consider the VPFP equation in IR3, that is

∂

∂t
f + v · ∇xf +∇v · (E − β v)f =

σ2

2
∆vf, (1)

where
f = f(t, x, v) (2)

denotes the probability density on the phase space at time t ∈ IR, x and v
represent position and velocity respectively, then β and σ are non-negative pa-
rameters. Moreover,

ρ(t, x) =

∫

f(t, x, v) dv (3)

denotes the spatial density and

E(t, x) = γ

∫

x− y

|x− y|3
ρ(t, y) dy, γ = ±

1

4π
, (4)

is the field acting on the test particles, which gives rise to a gravitational or an
electric field for negative or positive γ respectively.

Let f(t, x, v) be any classical solution to Eq.(1), associated with a sufficiently
regular initial condition f0 = f0(x, v). The following estimates are well-known
and consequence of the control on the energy

E(t) =
1

2

∫

|v|2 f(t, x, v) dx dv +
γ

2

∫ ∫

ρ(t, x) ρ(t, y)

|x− y|
dx dy, (5)
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for both positive and negative γ values.
Denoting by T an arbitrary but fixed T > 0, it holds (see Ref.s [12] and [14])
that

sup
t∈[0,T ]

‖ρ(t)‖L5/3 ≤ C1, (6)

‖E(t)‖L∞ ≤ C2 ‖ρ(t)‖
4/9
L∞ . (7)

Here and after Ci, i=1, 2, ..., denote positive constants depending on f0 and T
only.

Let b ∈ C∗
0 ([0, T ]), where we define

C∗
0 ([0, T ]) =

{

ξ : [0, T ] −→ IR3 / ξ ∈ C([0, T ]), ξ(0) = 0
}

(8)

and we consider the pair (X(t, s, x, v; b), V (t, s, x, v; b)), for t > s, which is a
solution of the integral system
{

X(t, s, x, v; b) = x+
∫ t

s
V (τ, s, x, v; b) dτ

V (t, s, x, v; b) = v e−β(t−s) +
∫ t

s
E(τ,X(τ, s, x, v; b)) e−β(t−τ) dτ + σB(t, s, b),

(9)
with

B(t, s, b) = b(t)− b(s) e−β(t−s) − β

∫ t

s

b(τ) e−β(t−τ) dτ. (10)

We note that a unique solution to Eq.(9) can be found under appropriate reg-
ularity hypotheses on the field E, to be discussed later on.
On C∗

0 ([0, T ]), endowed with the sup-norm topology, we introduce (see e.g.
Ref.[13]) the Wiener measure µ(db), which is concentrated on the Hölder con-
tinuous functions of exponent α< 1

2 . Therefore, the following identity holds,

∫

f(t, x, v)ϕ(x, v) dx dv = IE

[∫

f0(x, v)ϕ(X(t, 0, x, v; b), V (t, 0, x, v; b)) dx dv

]

,

(11)
where IE denotes ”expectation” with respect to µ and ϕ is any regular test
function.

The formulations we have introduced above are motivated by the fact that
the VPFP equation can be interpreted as the evolution equation for the prob-
ability density associated with a diffusion process (X(t), V (t)) ∈ IR6, initially
distributed according to f0 and solution of the stochastic differential system

{

dX(t) = V (t) dt
dV (t) = (E(t,X(t))− βV (t)) dt+ σ db(t).

(12)

Indeed, as the diffusion coefficient σ is constant, we can integrate Eq.(12) for
each sample b of the Brownian motion and the resulting trajectory (X(t; b), V (t; b))
is a sample of the diffusion process in Eq.s (9)-(10), whose statistical weight is
that assigned to b by the Wiener measure. We remark that Eq.(10) follows from
the stochastic integral

∫ t

s

e−β(t−τ) db(τ) (13)
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and a ”formal” integration by parts (see Ref.[9]). The explicit form of Eq.(10)
thus avoids the use of the stochastic calculus.
We also note that, for all b ∈ C∗

0 ([0, T ]), the application

(x, v) −→ (X(t, s, x, v; b), V (t, s, x, v; b)) (14)

is an invertible continuous mapping on IR6 and, for the Liouville’s theorem, we
have that the Jacobian is e−β(t−s). As a matter of fact, Eq.(11) can be replaced
by the more convenient one

f(t, x, v) = eβt IE [ f0(X(0, t, x, v; b), V (0, t, x, v; b)) ] , (15)

which will be the starting point of our analysis.
The main result of the present paper is summarized by the following

Theorem 1 Let f0(x, v) ∈ L1 ∩ L∞(IR6) be a probability density such that

f0(x, v) = 0 if |v| > Q0. (16)

Let f(t, x, v) be given by Eq.(15), with E computed in a selfconsistent way by
Eq.(4) and with β ∈ (0, β0] and σ ∈ (0, σ0]. Then, there exists a constant C,
depending only on f0, β0, σ0 and T , for which

sup
t∈[0,T ]

‖ρ(t)‖L∞ ≤ C. (17)

Remark 1 In Theorem 1, we assume the existence of f which satisfies
Eq.(15). In fact, the result above allows us to construct such f , which turns out
to be also a weak solution of Eq.(1). This can be done by a standard procedure,
for instance by regularizing the singular kernel x

|x|3 by means of a suitable cutoff

and then removing it by using Eq.(17), which is independent of the cutoff’s
parameters. The details are given in Ref.[10], where the two-dimensional case
is handled. Classical solutions can be easily obtained by assuming appropriate
regularity on f0.

Remark 2 The uniformity of the estimate in Eq.(17) with respect to β and
σ close to zero allows us to show the weak convergence of the solution, in the
limit β → 0 and σ → 0, to the corresponding one associated to the VP equation.
This is consequence of the convergence of the stochastic trajectories in Eq.(9)
to the usual characteristics of the VP equation. This procedure is similar to
that exploited for the vanishing viscosity limit, applied to Incompressible Fluid
Dynamics (see Ref.[8]). We do not give any detail here.

Remark 3 We shall not use in the sequel the fully structure of Eq.(1), but
only its representation through Eq.(11) or Eq.(15), together with the energy
estimates given in Eq.s (6)-(7).
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3 The proof of Theorem 1

Let b̂ be a sample of Brownian motion and (X̂(t, 0, x, v; b̂), V̂ (t, 0, x, v; b̂)), t ∈
[0, T ], the corresponding solution to Eq.s (9)-(10). We define

Q(t) = sup
(x,v)∈IR6

b̂∈C∗

0
([0,T ])

{

|V̂ (t, 0, x, v; b̂)| / |v| ≤ Q0 and sup
τ∈[0,t]

|b̂(τ)| ≤
|V̂ (t, 0, x, v; b̂)|α

40σ0

}

,

with 0<α< 1 to be chosen later. This quantity, even thought it is implicitly
defined, is meaningful because of the property of the mapping in Eq.(14) to be
invertible. Finally, let be

Q = 1 + sup
t∈[0,T ]

Q(t). (18)

It follows from Eq.(15) that

ρ(t, x) ≤ M eβT IE

[∫

X (|V (0, t, x, v; b)| ≤ Q0) dv

]

, (19)

where M = ‖f0‖L∞ and X denotes the characteristic function of generic events.
Then, we have

∫

X (|V (0, t, x, v; b)| ≤ Q0) dv =

∫

X (|V (0, t, x, v; b)| ≤ Q0, |v| ≤ Q) dv

+

∫

X (|V (0, t, x, v, b)| ≤ Q0, |v| > Q) dv,

that induces a similar decomposition on Eq.(19). The first term is easily bounded by

IE

[∫

X (|v| ≤ Q) dv

]

=
4

3
πQ3.

To deal with the second one, we need the Lévy’s inequality (see e.g. Ref.[13])

IE

[

max
τ∈[0,t]

|b(τ)| ≥ λ

]

≤ 2 IE [|b(t)| ≥ λ] , λ ≥ 0. (20)

Therefore, by the definition of Q in Eq.(18), we can write

IE

[∫

X (|V (0, t, x, v; b)| ≤ Q0, |v| > Q)

]

=

∫

IE

[

sup
τ∈[0,t]

|b(τ)| >
|v|α

40σ0

]

dv ≤ 2

∫

IE

[

|b(t)| >
|v|α

40σ0

]

dv.

As IE [|b(t)| ≥ λ] is exponentially decreasing in λ2, this last integral is uniformly
bounded by a constant. In this sense we state that the high velocities, due to
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the ”degenerate” samples of the Brownian motion, are not very probable (this
remark will be useful later on). In conclusion, we obtain that

ρ(t, x) ≤ C Q3,

where C depends only on f0 and T .
To achieve the proof, it is sufficient to show that Q is bounded as function

of T . From Eq.s (9)-(10), we deduce that

|V̂ (t, 0, x, v; b̂)| ≤ |v|+

∫ t

0

|E(τ, X̂(τ, 0, x, v; b̂))| dτ + σ |b̂(t)|+ σ β

∫ t

0

|b̂(τ)| dτ

and, according to the condition on the sample b̂ in the definition of Q(t), we
have

|V̂ (t, 0, x, v; b̂)| ≤ Q0+

∫ t

0

|E(τ, X̂(τ, 0, x, v; b̂))| dτ +σ
|V̂ (t, 0, x, v; b̂)|α

40σ0
(1+β t),

(21)
with

σ
|V̂ (t, 0, x, v; b̂)|α

40σ0
≤

Qα

40

for σ∈(0, σ0]. Our task in the sequel is to estimate the term

∫ t

0

|E(τ, X̂(τ, 0, x, v; b̂))| dτ.

We note that it follows from an immediate application of Eq.(7) that

sup
t∈[0,T ]

‖E(t)‖L∞ ≤ C3 Q
4
3 ,

but this is not enough to conclude the desired estimate.
To improve this result and obtain a better power for Q, we develop argu-

ments similar to those formulated by Schaeffer (see Ref.[12]) and Wollman (see
Ref.[14]) for solving the VP equation.
Let P = Qα, 0<α<1, as introduced above, so that 0 < P < Q. We set

∆T = min

{

T,
P

10C3 Q
4
3

}

,

where C3 is the same constant as in Eq.(7). If T
∆T is an integer, let beN= T

∆T −1,

otherwise let be N = [ T
∆T ]; then, for ti = i∆T, i = 0, ..., N and tN+1 = T , we

have

[0, T ] =
N
⋃

i=0

[ti, ti+1], |ti+1 − ti| ≤ ∆T.

It follows that, for any t∈ [0, T ],

∫ t

0

|E(τ, X̂(τ, 0, x, v; b̂))| dτ ≤
N
∑

i=0

∫ ti+1

ti

|E(τ, X̂(τ, 0, x, v; b̂))| dτ. (22)
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For simplicity, we will denote by (X̂(t), V̂ (t)) the sample of trajectory in the
definition of Q(t). From Eq.(4) and Eq.(11), thanks to a change of variables,
we deduce

∫ ti+1

ti

|E(τ, X̂(τ))| dτ ≤

∫ ti+1

ti

dτ

∫ ∫

f(τ, y, w) |y − X̂(τ)|−2 dy dw

=

∫ ti+1

ti

IE

[∫ ∫

f(ti, x, v) |X(τ, ti, x, v; b)− X̂(τ)|−2 dx dv

]

dτ (23)

=

∫ ti+1

ti

dτ

∫ ∫ ∫

f(ti, x, v) |X(τ, ti, x, v; b)− X̂(τ)|−2 dx dv µ(db).

The domain of integration of the last integral, that is

S = [ti, ti+1]× IR6 × C∗
0 ([0, T ]),

can be partitioned as follows,

S1 =

{

(τ, x, v; b) ∈ S / |v| ≤ P or |v − V̂ (ti)| ≤ P, sup
τ∈[ti,ti+1]

|b(τ)| ≤
P

40σ0

}

,

S2 =

{

(τ, x, v; b) ∈ S / |v| ≤ P or |v − V̂ (ti)| ≤ P, sup
τ∈[ti,ti+1]

|b(τ)| >
P

40σ0

}

,

S3 =
{

(τ, x, v; b) ∈ S / |v| > P and |v − V̂ (ti)| > P, |X(τ, ti, x, v; b)− X̂(τ)| ≤ d
}

,

S4 =
{

(τ, x, v; b) ∈ S / |v| > P and |v − V̂ (ti)| > P,

|X(τ, ti, x, v; b)− X̂(τ)| > d, sup
τ∈[ti,ti+1]

|b(τ)| ≤
P

40σ0

}

,

S5 =
{

(τ, x, v; b) ∈ S / |v| > P and |v − V̂ (ti)| > P,

|X(τ, ti, x, v; b)− X̂(τ)| > d, sup
τ∈[ti,ti+1]

|b(τ)| >
P

40σ0

}

,

where d>0 is to be chosen later on, as a function of Q, P and ∆T .
Therefore, we derive that

∫ ti+1

ti

|E(τ, X̂(τ))| dτ ≤ I1 + I2 + I3 + I4 + I5, (24)

with

Ij =

∫

Sj

f(ti, x, v) |X(τ, ti, x, v; b)− X̂(τ)|−2 dτ dx dv µ(db), j = 1, ..., 5.
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We are going to estimate the contribution of each integral Ij , j = 1, ..., 5,
separately. If (τ, x, v; b) ∈ S1 and |v| ≤ P , then

|V (τ, ti, x, v; b)| ≤ |v|+

∫ τ

ti

|E(s,X(s, ti, x, v; b))| ds+ σ |B(τ, ti, b)|

≤ P + C3 Q
4
3 ∆T + σ

P

40σ0
(2 + β T ) < 2P,

for σ∈(0, σ0] and β∈(0, β0], as σ0 and β0 have been usefully fixed.
Similarly, if |v − V̂ (ti)| ≤ P , then

|V (τ, ti, x, v; b)− V̂ (τ)| ≤ |v− V̂ (ti)|+

∫ τ

ti

∣

∣

∣
E(s,X(s, ti, x, v; b))− E(s, X̂(s))

∣

∣

∣
ds

+σ |B(τ, ti, b)|+ σ |B̂(τ, ti, b̂)|

≤ P+2C3 Q
4
3 ∆T+2σ

(

P

40σ0
+

Qα

40σ0

)

(2+β T ) < 2P.

Thus, coming back to the initial variables, we have

I1 ≤

∫ ti+1

ti

dτ

∫ ∫

f(τ, y, w)

|y − X̂(τ)|2

[

X (|w| < 2P ) + X (|w − V̂ (τ)| < 2P )
]

dy dw

= 2

∫ ti+1

ti

dτ

∫ ∫

f(τ, y, w) |y − X̂(τ)|−2 X (|w| < 2P ) dy dw.

Taking l > 0, the inner integral can also be decomposed into two terms, accord-
ing to |y − X̂(τ)| > l or |y − X̂(τ)| ≤ l. For the first one, we use the Hölder’s
inequality (for p = 5

3 ) and the estimate in Eq.(6); for the second one, we apply
directly the maximum principle as ‖f(t)‖L∞ ≤ eβ T ‖f0‖L∞ and we write

I1 ≤ 2C

∫ ti+1

ti

dτ





(

∫

|y−X̂(τ)|>l

1

|y − X̂(τ)|5
dy

)
2
5

+ P 3

∫

|y−X̂(τ)|≤l

1

|y − X̂(τ)|2
dy



,

to obtain
I1 ≤ C (P 3 l + l−

4
5 )∆T.

Finally, we minimize over l (by choosing l = P−5/3) and we conclude that

I1 ≤ C P
4
3 ∆T. (25)

We deal with the integral I2 in a similar way, that is

I2 ≤

∫ ti+1

ti

dτ

∫ ∫ ∫

X

(

sup
τ∈[ti,ti+1]

|b(τ)| >
P

40σ0

)

f(ti, x, v)

|X(τ, ti, x, v; b)− X̂(τ)|2
dx dv µ(db),
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so that we have

I∧2 =

∫ ti+1

ti

dτ

∫

|y−X̂(τ)|>l

dy

∫

f(τ, y, w) |y − X̂(τ)|−2 dw ≤ C1 l
− 4

5 ∆T

and

I∨2 =

∫ ti+1

ti

dτ

∫

|y−X̂(τ)|≤l

dy

∫

f(τ, y, w) |y − X̂(τ)|−2 dw

≤

∫ ti+1

ti

dτ





∫ ∫ ∫

f(ti, x, v)
X
(

|X(τ, ti, x, v; b)− X̂(τ)| ≤ l
)

|X(τ, ti, x, v; b)− X̂(τ)|
5
2

dx dv µ(db)





4
5

×

(

∫ ∫ ∫

f(ti, x, v)X

(

sup
τ∈[ti,ti+1]

|b(τ)| >
P

40σ0

)

dx dv µ(db)

)
1
5

.

The second part of the last integral can be rewritten as

(‖f(ti)‖L1)
1
5

(

∫

X

(

sup
τ∈[ti,ti+1]

|b(τ)| >
P

40σ0

)

µ(db)

)
1
5

and it is exponentially decreasing in P 2, while the first part becomes





∫ ∫

f(τ, y, w)
X
(

|y − X̂(τ)| ≤ l
)

|y − X̂(τ)|
5
2

dy dw





4
5

≤ C Q
12
5 l

4
10 .

Then, choosing l = P−5/3, we conclude that

I∨2 ≤ C P
16+5α
15α exp

{

−C P 2
}

and it can be neglected with respect to I∧2 . In conclusion, we have

I2 ≤ C P
4
3 ∆T. (26)

The bounds of I3 and I5 are almost immediate,

I3 ≤

∫ ti+1

ti

dτ

∫

|y−X̂(τ)|≤d

dy

∫

f(s, y, w)
1

|y − X̂(τ)|2
dw ≤ C Q3 d∆T (27)

and

I5 ≤

∫ ti+1

ti

dτ

∫ ∫

f(ti, x, v)

d2
IE

[

sup
τ∈[ti,ti+1]

|b(τ)| >
P

40σ0

]

dx dv ≤
∆T

d2
exp

{

−C P 2
}

.

(28)
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It remains I4 to estimate, that we will treat as in Ref.s [12] and [14].
If (s, x, v; b) ∈ S4, then

|V (τ, ti, x, v; b)−V̂ (τ)| ≥ |v−V̂ (ti)|−

∫ τ

ti

∣

∣

∣
E(s,X(s, ti, x, v; b))− E(s, X̂(s))

∣

∣

∣
ds

−σ |B(τ, ti, b)| − σ |B̂(τ, ti, b̂)| (29)

≥ P−2C3 Q
4
3 ∆T−2σ

(

P

40σ0
+

Qα

40σ0

)

(2+β T ) ≥
1

2
P.

To expand on the time integral, we consider (x, v; b) fixed in S4 and we define

Z(τ) = X(τ, ti, x, v; b)− X̂(τ),

so there exists τ0 = τ0(ti, x, v; b) ∈ [ti, ti+1] such that, for all τ ∈ [ti, ti+1],

|Z(τ0)| ≤ |Z(τ)|.

Moreover, it follows that

Ż(τ) = Ż(τ0)+

∫ τ

τ0

[

E(s,X(s, ti, x, v; b))− E(s, X̂(s))
]

ds+σ
[

B(τ, τ0, b)− B̂(τ, τ0, b̂)
]

.

Let be
Z̄(τ) = Z(τ0) + Ż(τ0)(τ − τ0),

then Z̄(τ0) = Z(τ0) and
˙̄Z(τ0) = Ż(τ0), so that

Z(τ)−Z̄(τ) =

∫ τ

τ0

[

Ż(s)− ˙̄Z(s)
]

ds

=

∫ τ

τ0

ds

∫ s

τ0

[

E(s′, X(s′, ti, x, v; b))− E(s′, X̂(s′))
]

ds′

+σ

∫ τ

τ0

B(s, τ0, b) ds+ σ

∫ τ

τ0

B̂(s, τ0, b̂) ds

≤
1

2
(τ − τ0)

2 C3 Q
4
3 + 2σ

P

40σ0
(τ − τ0)

≤
C3

2
(τ − τ0)Q

4
3 ∆T +

1

6
P (τ − τ0) ≤

1

4
P (τ − τ0),

and hence

|Z(τ)| ≥ |Z̄(τ)| −
1

4
P |τ − τ0|. (30)

To get a lower bound for |Z̄(τ)|, we note that if τ0 = ti then Z(τ0) · Ż(τ0) ≥ 0,
if τ0 = ti+1 then Z(τ0) · Ż(τ0) ≤ 0 and if τ0 ∈ (ti, ti+1) then Z(τ0) · Ż(τ0) = 0;
in all three cases, (τ − τ0)Z(τ0) · Ż(τ0) ≥ 0 for τ ∈ [ti, ti+1], so that by Eq.(29)
we deduce

|Z̄(τ)|2 = |Z(τ0)|
2 + |Ż(τ0) (τ − τ0)|

2 + 2 (τ − τ0)Z(τ0) · Ż(τ0)
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≥ |Ż(τ0)|
2 |τ − τ0|

2 ≥

(

1

2
P

)2

|τ − τ0|
2.

Using this inequality in Eq.(30) yields

|Z(τ)| ≥
P

2
|τ − τ0|, for all τ ∈ [ti, ti+1]. (31)

We shall use the last bound to estimate
∫ ti+1

ti

|Z(τ)|−2 XS4
(τ, x, v; b) dτ.

By construction of S4, it is XS4
(τ, x, v; b) = 0 if |Z(τ)| ≤ d. We define an

application Σ : [0,+∞) −→ IR by

Σ(r) =

{

d−2 if 0 ≤ r ≤ d
r−2 if r > d

and we note, by Eq.(31) and since Σ is non-increasing, that

|Z(τ)|−2 XS4
(τ, x, v; b) ≤ Σ(|Z(τ)|) ≤ Σ

(

P

2
(τ − τ0)

)

.

Thus, by means of a short computation, we obtain

∫ ti+1

ti

|Z(τ)|−2 XS4
(τ, x, v; b) dτ ≤ 2

∫ +∞

0

Σ

(

P

2
τ

)

dτ =
2

Pd
.

Finally, by substituting in integral I4, we have

I4 ≤
2

Pd

∫ ∫ ∫

f(ti, x, v) dx dv µ(db)

≤
2

d
P−3

∫ ∫ ∫

|v|2 f(ti, x, v) dx dv µ(db) ≤ 2K P−3 d−1, (32)

where K is a constant, only depending on f0 and T , which bounds the kinetic
energy (see e.g. Ref.s [4] and [5]).
Returning to Eq.(24), by combining the estimates above in Eq.s (25), (26), (27),
(28) and (32), we get

∫ ti+1

ti

|E(τ, X̂(τ))| dτ ≤ C
(

P
4
3 ∆T +Q3 d∆T + d−2 ∆T exp

{

−C P 2
}

+ P−3 d−1
)

.

By choosing d = P− 3
2 Q− 3

2 ∆T− 1
2 , for the definition of ∆T , it yields

∫ ti+1

ti

|E(τ, X̂(τ))| ds ≤ C
(

P
4
3 ∆T +Q

3
2 P− 3

2 ∆T
1
2 +Q3 ∆T 2 P 3 exp

{

−C P 2
}

)

≤ C
(

P
7
3 Q− 4

3 + P−1 Q− 5
6 +Q

1
3 P 5 exp

{

−C P 2
}

)

.
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We note that, as Q = P
1
α , the third term of the last line can be neglected with

respect to the other ones, because it is exponentially decreasing.
So, we conclude that

∫ ti+1

ti

|E(τ, X̂(τ))| dτ ≤ C Q− 4
3
+ 7

3
α.

After a short computation from Eq.(22), it yields

∫ t

0

|E(τ, X̂(τ, 0, x, v; b̂))| dτ ≤ (N + 1)C Q− 4
3
+ 7

3
α. (33)

We now observe that, if T ≤ P/10C1 Q
4
3 then ∆T = T and N = 0, if T >

P/10C1 Q
4
3 then ∆T =P/10C1 Q

4
3 =Qα− 4

3 /10C1 and N< T
∆T =10C1 T Q

4
3
−α.

In both cases, we have

N + 1 ≤ 1 + C T Q
4
3
−α ≤ C (T + 1)Q

4
3
−α,

and hence
∫ t

0

|E(τ, X̂(τ, 0, x, v; b̂))| dτ ≤ C (T + 1)Q
4
3
α. (34)

Let γ = 4
3 α (if we choose 0 < α < 3

4 then γ < 1). It follows from Eq.(21) that

|V̂ (t, 0, x, v; b̂)| ≤ Q0 + C (T + 1)Qγ +
1

40
Qα ≤ Q0 + C (T + 1)Qβ , (35)

where β = max{α, γ} and 0 < β < 1.
The upper bound in Eq.(35) is independent of the choice of the sample (X̂, V̂ )
and so, by taking the supremum, we conclude

Q ≤ Q0 + C (T + 1)Qβ ≤ [Q0 + C (T + 1)]
1

1−β .

This completes the proof.
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