Bi-clustering continuous data with self-organizing map - Archive ouverte HAL
Article Dans Une Revue Neural Computing and Applications Année : 2012

Bi-clustering continuous data with self-organizing map

Khalid Benabdeslem
Kais Allab

Résumé

In this paper, we present a new SOM-based bi-clustering approach for continuous data. This approach is called Bi-SOM (for Bi-clustering based on Self-Organizing Map). The main goal of bi-clustering aims to simultaneously group the rows and columns of a given data matrix. In addition, we propose in this work to deal with some issues related to this task: (1) the topological visualization of bi-clusters with respect to their neighborhood relation, (2) the optimization of these bi-clusters in macro-blocks and (3) the dimensionality reduction by eliminating noise blocks, iteratively. Finally, experiments are given over several data sets for validating our approach in comparison with other bi-clustering methods.
Fichier principal
Vignette du fichier
Bi-clustering_continuous_data_with_self-organizing_map.pdf (588.22 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00874676 , version 1 (18-10-2013)

Identifiants

Citer

Khalid Benabdeslem, Kais Allab. Bi-clustering continuous data with self-organizing map. Neural Computing and Applications, 2012, 22 (7-8), pp.1551-1562. ⟨10.1007/s00521-012-1047-6⟩. ⟨hal-00874676⟩
265 Consultations
478 Téléchargements

Altmetric

Partager

More