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Abstract In this paper, we present a new SOM-based bi-

clustering approach for continuous data. This approach is

called Bi-SOM (for Bi-clustering based on Self-Organizing

Map). The main goal of bi-clustering aims to simulta-

neously group the rows and columns of a given data matrix.

In addition, we propose in this work to deal with some

issues related to this task: (1) the topological visualization

of bi-clusters with respect to their neighborhood relation,

(2) the optimization of these bi-clusters in macro-blocks

and (3) the dimensionality reduction by eliminating noise

blocks, iteratively. Finally, experiments are given over

several data sets for validating our approach in comparison

with other bi-clustering methods.

Keywords Bi-clustering � SOM � Dimensionality

reduction

1 Introduction

Clustering is an important task in machine learning and

data mining processes. It aims at organizing data into

homogeneous groups (or clusters), such as all instances in

the same group are similar to each other (cohesion prop-

erty), while dissimilar from instances in other groups

(separation property). This organization is only made on

rows according to all columns of the data matrix. However,

it is clear that in the obtained partition, each class of

instances is characterized according to a subset of features

that participate the most on its construction. Thus, it makes

good sense to simultaneously search for the specific rela-

tion that may exist between the instances and the features.

This defines the block clustering (bi-clustering or cross-

classification) whose purpose is to reorganize the data

matrix into homogeneous blocks according to a given

similarity measure.

Since the first algorithm, called Block Clustering and

proposed in [17], several other bi-clustering methods have

been proposed in diverse application domains, including

image processing [32], text mining [10] and bioinformatics

[23]. In the direct clustering approach (Block Clustering),

the data matrix is divided into several sub-matrices corre-

sponding to blocks. The division of a block depends on the

variance of its values. Indeed, more the variance is low,

more the block is constant. The quality of the final partition

is then estimated by the sum of all the variances of these

blocks [17].

In 1975, Hartigan [18] proposed two other algorithms of

bi-clustering: the first one (One-Way Splitting) is mainly

based on partitioning the instances with features having an

intra-class variance greater than a given threshold in order

to split the associated class. As any technique based on

direct clustering, a minimal threshold yields a significant

number of classes with low density and vice-versa. The

second algorithm (Two-Way Splitting) proceeds by suc-

cessive divisions of rows and columns. It calculates, at

each iteration, a large number of variances. This is not

adaptable to very large databases. In addition, the choice of

the threshold is not obvious and requires either prior

knowledge or additional tests.

In 1983, Govaert [16] proposed three algorithms of bi-

clustering, Croeuc for continuous data, Crobin for binary
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data and Croki2 for contingency tables. The three algo-

rithms proceed by optimizing the partitions of rows and

columns by an iterative procedure based on the euclidean

distance as an objective function to minimize. These

algorithms can be applied to large data sets, but they

require the number of both rows and columns.

The main drawback of the above algorithms is that the

division (in rows and/or columns) is irreversible. In other

words, these methods never reconsider the choice of a

division once done. To get around this problem, Cheng and

Church [7] proposed in 2000, d-clusters approach, a greedy

function for creating bi-clusters by adding rows (or col-

umns) that maximize a local gain. This approach uses the

residual mean square (RMS) as similarity measure. In

2003, Yang et al. improved d-clusters by proposing

another method called FLOC (Flexible Overlapped Clus-

ters). They introduced an additional function dealing with

the missing data and the overlapping [35]. In 2002, Tanay

et al. [33] proposed a graph-based method called Samba,

which enumerates exhaustively all the cliques modeling the

possible bi-clusters in a bipartite graph from the data

matrix. Other statistical models were used in an approach

called Plaid Model proposed by Lazzaroni and Owen [21]

and in a method of spectral bi-clustering proposed by

Klugar et al. [19].

We may also cite methods of generative bi-clustering

proposed by Govaert et al. [15] based on mixture models

and the bi-clustering approaches proposed by Pensa et al.

[27] which improve the relevance of the partitions

according to background knowledge in form of constraints.

Several other methods of bi-clustering using various

techniques were proposed: hierarchical bi-clustering [11],

bi-clustering based on evolutionary algorithms [25],

bayesian bi-clustering [24], bi-clustering using simulated

annealing [5] and finally bi-clustering using random walk

[1].

Furthermore, there are some methods of bi-clustering

based on self-organizing maps (SOM) as DCC (Double

Conjugated Clustering) [6] and KDISJ (Kohonen for Dis-

jonctive Table) [8]. The approach DCC has problems rel-

ative to the use of two maps (one for the instances and the

other for the features), which are built independently with

the same dimension. KDISJ is dedicated to categorical data

and will be more explained in the next section.

The aforementioned bi-clustering approaches have sev-

eral shortcomings. The iterative clustering on rows and

columns tries to optimize an objective function applied to

one of both partitions (rows or columns) by fixing the other

one. In some cases, this process of alternative optimization

can be inefficient on large data sets. Indeed, the inconve-

nience of divisive and greedy approaches is that the deci-

sions (division, addition/deletion of rows/columns) are

taken once for all, and a bad choice could imply the loss of

potential good bi-clusters [7]. Besides, the high complexity

of the statistical and enumerative approaches is prohibitive.

Finally, several methods require the intervention of the user

to fix the values of some parameters (number of bi-clusters,

thresholds, etc.).

To overcome some of these shortcomings, we propose

an approach of topological bi-clustering (Bi-SOM) based

on Self-Organizing Maps. SOM is a very powerful tool for

analyzing and visualizing numerical data. It is used by Bi-

SOM to cluster instances and features simultaneously in a

single map and visualize the obtained blocks. In addition,

Bi-SOM uses an iterative process of dimensionality

reduction by eliminating blocks of irrelevant features

considered as ‘‘noise’’.

The rest of the paper is organized as follows. The next

section describes a topological approach of bi-clustering

called KDISJ [8, 9]. Then, we present our proposed

approach (Bi-SOM) in the third section. Finally, we pro-

vide some experimental results to validate this approach

and report comparison results with other bi-clustering

methods on real and synthetic data.

2 Related work

SOM is a very popular tool used for visualizing high-

dimensional data spaces. It can be considered as doing

vector quantization and/or clustering while preserving the

spatial ordering of the input data rejected by implementing

an order of the reference vectors (also called prototype

vectors, cluster centroids or reference vectors) in a one- or

two-dimensional output space. The SOM consists of neu-

rons organized on a regular low-dimensional grid, called

the map.

More formally, the map is described by a graph ðC;EÞ.

C is a set of k interconnected neurons having a discreet

topology defined by E. For each pair of neurons (c, r) on

the map, the distance d(c, r) is defined as the shortest path

between c and r on the graph. This distance imposes a

neighborhood relation between neurons. Each neuron c is

represented by a p-dimensional reference vector

wc
= {w1

c, …, wp
c}, where p is equal to the dimension of

the input vectors. The number of neurons may vary from a

few dozen to several thousand depending on the

application.

The SOM training algorithm resembles k-means [22].

The important distinction is that in addition to the best

matching reference vector, its neighbors on the map are

updated. The final result is that neighboring neurons on the

grid correspond to neighboring regions in the input space.

The training made by SOM introduces the preservation of

the topology and imposes that two nearby neurons c, r by

report to the discreet topology, are associated with two
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nearby vectors wc, wr, by report to the distance chosen

between the data (Fig. 1).

The SOM algorithm is proposed on two versions: sto-

chastic (on-line) or batch (off-line) versions. In this paper,

we choose the first version for its ability to well organize

the map providing a good topology preservation from data.

Theoretical comparisons between both versions can be

found in [12].

The first SOM-based bi-clustering approach has been

proposed by Cottrell et al. [9]. The method, called KDISJ

(Kohonen for Disjonctive Table), is an extension of the

algorithm KORRESP that has been introduced to analyze

contingency tables [8]. The KDISJ algorithm is dedicated

to categorical data and aims to simultaneously analyze the

instances and the modalities of the qualitative features that

describe them.

Let A be a data matrix of dimension (n 9 p), we build

the complete disjunctive table D of dimension

(n 9 m), such as m is the number of the modalities of the p

features. D is then corrected (Dc) by the following formula:

dcij ¼
dij
ffiffiffiffiffiffiffiffiffi

di:d:j

p ð1Þ

where: di: ¼
X

m

j¼1

dij and d
:j ¼

X

n

i¼1

dij ð2Þ

Note that di. is equal the number of features p, and d.j
represents the number of instances associated with the

modality j. After this transformation, we use the Euclidian

distance on Dc which is equivalent to use the weighted v2

distance on D.

We then consider SOM algorithm and associate with

each unit u a reference vector wu that is comprised of

(m ? n) components, with the first m components evolving

in the space of instances (represented by the rows of Dc)

and the last n components evolving in the space of

modalities (represented by the columns of Dc). The SOM

algorithm lends itself to a double learning process. At each

step, we alternatively draw from Dc a row (instance i) or a

Dc column (modality j).

When we draw an instance i, we associate the modality

j(i) defined by:

jðiÞ ¼ argmaxjðd
c
ijÞ ¼ argmaxj

dij
ffiffiffiffiffiffiffi

pd
:j

p

 !

ð3Þ

that maximizes the coefficient d1
c, that is the rarest

modality out of all of the corresponding ones in the

total population. This modality is the most characteristic

for this instance. In case of ex-aequo, we do as usual in

this situation, by randomly drawing a modality among

the candidates. We then create an extended instance

vector X = (i, j(i)), of dimension (m ? n) (Fig. 2).

Subsequently, we look for the closest of all the

reference vectors, in terms of the Euclidean distance

restricted to the first m components. Let us denote by u�

the winning unit:

u� ¼ argminu kXð1...mÞ � wu
ð1...mÞ k

2
: ð4Þ

Next, we update the reference vector of the unit u� and

its neighbors closer to the extended vector X = (i, j(i)):

wu
ð1...mÞðt þ 1Þ ¼ wu

ð1...mÞðtÞ þ e rðu; u�ÞðXð1...mÞ � wu
ð1...mÞðtÞÞ

ð5Þ

where e is the adaptation parameter (positive, decreasing

with time) and r is the neighborhood function, defined by

r(u,u�) = 1 if u and u� are neighbors in the Kohonen

network, and = 0 if not. The radius of the neighborhood

varies in the time too.

When we draw a modality j with dimension n (a column

of Dc), we do not associate an instance with it. For

explaining the principle, let us denote by Y (see Fig. 2) the

Fig. 2 The data matrix D, the

corrected matrix D
c and the

vectors X (line ? column),

Y (column)

Fig. 1 Two-dimensional topological map with 1-neighborhood of a

neuron c. Rectangular (red) with 8 neighbors and diamond (blue) with

4 neighbors (colour figure online)
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n-column vector corresponding to modality j. We then

seek the closest reference vector, in terms of the Euclidean

distance restricted to the last n components.

Let v� be the winning unit:

v� ¼ argminu kYðmþ1...mþnÞ � wu
ðmþ1...mþnÞk

2
: ð6Þ

We then update the last n components of the reference

vector associated with v� and its neighbors closer to the

corresponding components of the modality vector

Y, without modifying the first m components. This step

can be formulated by:

wu
ðmþ1...mþnÞðt þ 1Þ ¼ wu

ðmþ1...mþnÞðtÞ

þ e rðu; v�ÞðYðmþ1...mþnÞ

� wu
ðmþ1...mþnÞðtÞÞ ð7Þ

We so apply the SOM algorithm to the instances and

modalities while maintaining them associated. Generally,

(n ? m) iterations are enough for obtaining the conver-

gence [9]. In the end, neighboring instances and modali-

ties are classified in the same class or in neighboring

classes. As we mentioned above, this approach handles

nominal or discrete features, and therefore, continuous

features need to be properly discretized. This could imply

a dramatic loss of information in some cases. We suggest

to solve this problem by the denition of a new link

between rows and columns while respecting the nature of

the continuous data.

3 Proposed approach

In this section, we describe our approach that we call Bi-

SOM. The proposal carries out a bi-clustering and dimen-

sionality reduction from a continuous data matrix. The

principle of Bi-SOM, on a set of n instances described by p

features, aims to create a partition of homogeneous data

blocks; containing both instances and features that char-

acterize them. The idea is based on this notion of

characterization as the link between features and instances

for clustering them simultaneously in one map.

Let A be a data matrix of dimension (n 9 p). We con-

sider a Kohonen network in which we associate with each

unit u a reference vector wu that consists of (p ? n) com-

ponents. The first p components represent the feature

space, and the last n components represent the sample

space. The Kohonen algorithm lends itself to a double

learning process. At each step, we alternatively draw a

vector X (a row or a column) from A.

When X is a row (instance), we seek its nearest neighbor

(Y in A) in terms of Euclidean distance. We then create two

extended vectors V1, V2 of dimension (p ? n) by concat-

enating X and Y with the same feature K which charac-

terizes them at best. The feature K corresponds to the

minimum value among the distances between the compo-

nents of X and those of Y (Fig. 3).

K ¼ argminjðXj � YjÞ
2 ð8Þ

Note that if there are several minimum values, we build

several vectors for the same pair of instances X and Y with

different columns for K.

For each vector V1 (V2 respectively), we seek for the

closest of all the reference vectors, in terms of the

Euclidean distance using all components (p ? n) (contrary

to KDISJ which uses the Euclidian distance restricted on

the first p components).

Let us denote by u�1 (u�2) the winning unit of V1 (V2)

u�1 ¼ argminukV1 � wuk2 ð9Þ

Next, we update the reference vectors of the unit u�1 (u�2)

and its neighbors in the map:

wu
ð1...pþnÞðt þ 1Þ ¼ wu

ð1...pþnÞðtÞ þ e rðu; u�1ÞðV1ð1...pþnÞ

� wu
ð1...pþnÞðtÞÞ ð10Þ

Note that if Y is the closest instance to X, and K is the

column which characterizes them at best, then V1 =

[X K], V2 = [Y K] ([X K] denotes de concatenation of X

and K). However, X may not be necessarily the closest

Fig. 3 The data matrix, the

constructed vectors of

dimension (n ? p): V1 = [XK]

and V2 = [YK]
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instance to Y. In this case, let X0 be the closest instance to Y

and K0 the feature that characterizes them at best, thus we

construct V3 = [Y K0] and V4 = [X0 K0]. If V2 and V3 are

classified in different neurons, then Y belongs to several

classes. Consequently, this property leads the overlapping

of these classes on Y.

When X is a column (feature), with dimension n, we

seek the reference vector (neuron) that is the closest, in

terms of the Euclidean distance restricted to the last n

components.

Let v� be the winning unit of X:

v� ¼ argminukXðpþ1...pþnÞ � wu
ðpþ1...pþnÞk

2 ð11Þ

We then update the last n components of the winning

reference vector associated with v� and its neighbors closer

to the corresponding components of X, without modifying

the first p components:

wu
ðpþ1...pþnÞðt þ 1Þ ¼ wu

ðpþ1...pþnÞðtÞ þ erðu; v�ÞðXðpþ1...pþnÞ

� wu
ðpþ1...pþnÞðtÞÞ ð12Þ

In the obtained partition, a block (neuron) could be

empty, containing features and instances, or containing

only features. In the last case, Bi-SOM considers these

features, which do not characterize no instance, as being

irrelevant. Thus, they are deleted from the data matrix, and

the bi-clustering is then restarted on the new data matrix.

This operation is repeated until the elimination of all the

blocks containing only features.

Finally, Bi-SOM is clustered by an Ascendant Hierar-

chical Clustering (AHC) applied on the reference vectors

of the map. This Post-clustering aims at grouping together

the close blocks into macro-blocks, in order to optimize

their initial number.

3.1 Algorithm

Bi-SOM takes in input a data matrix A of dimension

(n 9 p) and returns a partition C in a single topological

map. The reference vectors, representing the neurons of the

map, are of dimension (p ? n) since each vector is a result

of the concatenation of a row and a column of A.

In the worst case, each row of A will be concatenated

with all the columns by building every time two vectors

(the row and its nearest neighbor). Thus, the number of

elements to be treated by SOM is of 2n vectors (for

rows) plus p vectors (for columns). The complexity of

SOM is O(kn), where k is the number of neurons in the

map. Consequently, the complexity of Bi-SOM is

O(k(2n ? p)).

Note that B in the algorithm represents the ‘‘Noisy’’

feature set. It contains the features that do not characterize

no instances in the map. In other terms, the features are

considered as irrelevant if they belong to neurons having

no instances. Therefore, they are deleted from the data

matrix, and the bi-clustering is repeated on the new data

matrix until obtaining blocks with both instances and

features.

4 Experiments

4.1 Data sets

Bi-SOM is implemented in Matlab with the Toolbox

available in http://www.cis.hut.fi/projects/somtoolbox/. In

the first phase of experiments, we applied the approach to

data describing several diseases: Breast cancer wisconsin,

Heart disease, Ovarian cancer and Leukemia disease

(Table 1). The Leukemia data set was used for the first

time by Golub et al. [14] and by other authors afterward

[19, 23] . The data consist of 72 individuals with two

types of Leukemia named ALL (Acute Lymphocytic Leu-

kemia) and AML (Acute Myelogenous Leukemia). The

data contain initially 7,129 features (genes). In [6], it was

suggested to delete the ‘‘affymetrix’’ control-genes and

the genes having a value\20 (biologically, the low levels

of expression are difficult to interpret). Finally, 1,762

features are kept.

Table 1 Characteristics of used

data sets
Data set Kind n p # class References

Breast Real 699 9 2 [13]

Heart Real 303 13 2 [13]

Ovarian Real 54 1,536 2 [31]

Leukemia Real 72 1,762 2 [14]

Prelic1 Synthetic 100 50 10 [28]

Prelic2 Synthetic 100 100 10 [28]

Prelic3 Synthetic 100 50 10 [28]

Prelic4 Synthetic 100 100 10 [28]

Neural Comput & Applic (2013) 22:1551–1562 1555
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The other data sets are synthetic and provided by Prelic

et al. [28] for analyzing the effects of noise and overlap-

ping on the bi-clustering performances.

4.2 Evaluation criteria

It is always difficult to compare two methods of bi-clus-

tering, because of their unsupervised nature. Nevertheless,

there are some indices (internal and external) allowing to

estimate the quality of the obtained partition.

4.2.1 Internal indices

Internal indices compare intrinsic information about data

with the bi-clustering results. In this case, no a priori

information further than the raw data are available [30].

An internal index is calculated from two matrices P and

M. The matrix P contains the information on the proximity

between elements (rows or columns) such that: Pij =

Pji = distance (xi, xj). The matrix M is built as described in

external indices, but inversed so higher values correspond

to objects (rows or columns) not grouped together. For

example Mij = 1/(1 ? k) such as k is the number of times

that objects i and j are classified together. Mij is included

between 0 and 1; it is equal to 1 if i and j are never clas-

sified in the same class and close to 0 if they are often

classified in the same class. These two matrices are com-

pared by using the normalized Hubert index [28]:

HðP;MÞ ¼
1
h

Pl�1
i¼1

Pl
j¼iþ1ðPij � lPÞðMij � lMÞ

rPrM
ð13Þ

where l is the number of objects of the matrix P, and

h = l(l - 1)/2. lP, lM are the means of matrices P and

M and rP, rM their variances, respectively. We can thus

calculate the index HI for the instances (rows) and the

index HF for features (columns), and both indices in:

HIF ¼
nHI þ pHF

nþ p
ð14Þ

where n is the number of instances and p is the number of

features. The best bi-clustering is the one that minimizes

the value of HIF.

4.2.2 External indices

The external indices are used to compare the obtained

partition with the correct partition of the data, when it is

available.

Let S and R be two partitions, and F a cross table

(S 9 R). Fij indicates the similarity between the bi-cluster

i from S and the bi-cluster j from R. We use the matrix F to

calculate the F-score index [34].

• Let gi be the number of instances in the bi-cluster i and

ci the number of features in the bi-cluster i (ni = gici);

• gi\ j is the number of instances belonging to both bi-

clusters i and j;

1556 Neural Comput & Applic (2013) 22:1551–1562
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• ci\ j is the number of features belonging to both bi-

clusters i and j.

The F-score between i and j is calculated as follows:

F-scoreði; jÞ ¼
2ðgi\jÞðci\jÞ

ni þ nj
ð15Þ

From Eq. (15), we can calculate the overall relevance

between the two partitions R and S by:

RelevanceðR; SÞ ¼
1

jRj

X

jRj

i¼1

max
jSj
j¼1ðF-scoreði; jÞÞ ð16Þ

We can also use another measure to evaluate Bi-SOM

by calculating the degree of similarity between the

obtained partition and the correct partition (Match Score)

[2]. Let S and R be two partitions. G1 the set of rows in

S, G2 the set of rows in R, C1 the set of columns in S and

C2 the set of columns in R. The Match Score between S and

R is:

MatchScoreðS;RÞ ¼

1

jSj

X

ðG1;C1Þ2S

maxðG2;C2Þ2R
jG1 \ G2j þ jC1 \ C2j

jG1 [ G2j þ jC1 [ C2j
ð17Þ

Finally, three other external indices are used: Jaccard

index, Rand index (RI) [29] and Adjusted Rand index

(ARI) [2]. We note by:

a: the number of pairs of objects classified together in

S and in R.

b: the number of pairs of objects classified together in

S but not in R.

c: the number of pairs of objects classified together in

R but not in S.

d: the number of pairs of objects not classified neither in

S nor in R.

JaccardðS;RÞ ¼
a

aþ bþ c
ð18Þ

RIðS;RÞ ¼
aþ d

aþ bþ cþ d
ð19Þ

ARIðS;RÞ ¼
2ðad � bcÞ

ðaþ bÞðbþ dÞ þ ðaþ cÞðcþ dÞ
ð20Þ

4.3 Results on synthetic data

In the first phase of experiments, we applied Bi-SOM to

synthetic data sets provided by Prelic et al. [28]. These data

sets illustrate various scenarios allowing to study the

effects of noise and overlapping on the proposed approach.

Two types of bi-clusters are considered (constant and

additive) (Table 2).

4.3.1 Effect of noise

In this phase, we applied Bi-SOM on two data sets, Prelic1

(for constant bi-clusters) and Prelic2 (for additive bi-

clusters). The aim is to analyze the sensitivity of the

approach to noise, by using the Match Score as quality

measure.

The first set of data Prelic1 is of dimension (100 9 50).

It illustrates constant bi-clusters and contains a first correct

version of the data and other versions corresponding to

rates of 5, 10, 15, 20 and 25 % of noise. The second set of

data Prelic2 is of dimension (100 9 100). It illustrates

additive bi-clusters and contains a first correct version of

the data, and other versions corresponding to rates of 2, 4, 8

and 10 % of noise.

Note that this notion of noise is different from the fea-

tures’s relevance study, previously described in Bi-SOM.

The Noise here is imitated by adding random values drawn

from a normal distribution to each cell of the original

matrix.

Figure 4 shows the comparison of the results obtained

by Bi-SOM with those of the methods (BiMax [28], ISA

[4], Samba [33], CC [7], OPSM [3] and x-Motif [26]). In

the absence of noise, Bi-SOM, ISA and Samba realize an

excellent score more than 99 %, as well for the constant bi-

clusters as the additive bi-clusters. BiMax realizes weak

and unstable scores in the case of additive bi-clusters. The

other methods have weak results for both scenarios. The

most important in our case is that in the presence of

the noise, Bi-SOM realizes an excellent Match Score often

equal to 100 % (Fig. 4), which means that the method is

robust to noise, and particularly competitive to the other

methods such as ISA and Samba.

Figure 5 illustrates the results obtained by Bi-SOM

applied on the data Prelic1 relative to the constant bi-

clusters, with a rate of noise equal to 5 %. In Fig. 5b, we

show the obtained blocks (bi-clusters) after the segmenta-

tion of the map. Each block corresponds to all the neurons

Table 2 Examples of two types of bi-clusters

(a) Constant bi-cluster

1.0 2.0 3.0 4.0

1.0 2.0 3.0 4.0

1.0 2.0 3.0 4.0

1.0 2.0 3.0 4.0

(b) Additive bi-cluster

1.0 2.0 5.0 0.0

2.0 3.0 6.0 1.0

4.0 5.0 8.0 3.0

5.0 6.0 9.0 4.0

The reference rows are in bold
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having the same color in Fig. 5a. We can see that Bi-SOM

obtains the optimal number of ten (10) blocks, corre-

sponding to the correct partition (10 not overlapped blocks

of dimension (10 9 5)). The blocks are visualized in the

form of a perfect diagonal in (Fig. 5b) according to the

topology illustrated in the map of Fig. 5a.

4.3.2 Effect of overlapping

In this phase, we applied Bi-SOM on two other data sets,

Prelic3 (for constant bi-clusters) and Prelic4 (for additive

bi-clusters). These data sets are not noisy but contain a first

correct version of the data, and other versions containing

bi-clusters overlapped in rows and columns. The rate of

overlapping varies from 0 to 8 elements (rows and

columns). The goal is to analyze the sensitivity of the

approach to overlapped bi-clusters.

BiMax is the only method that is stable, whatever the

rate of overlapping and whatever the type of bi-clusters.

Bi-SOM, Samba and ISA realize good scores, but they are

sensitive to the overlapping (ISA is the most sensitive one).

Although OPSM is not affected by the rate of overlapping

in the case of the additive bi-clusters, it remains inefficient

for the constant bi-clusters, which explains its absence in

Fig. 6a.

Figure 7 shows the results obtained by Bi-SOM applied

on the data Prelic4 relative to additive bi-clusters with a

rate of overlapping equal to 10 % (in rows and columns).

Figure 7b shows the obtained blocks (bi-clusters) after the

segmentation of the map. Each block corresponds to all

Fig. 5 Results of Bi-SOM

applied to the correct version of

Prelic1 data set. a The

segmented map. b The obtained

blocks

Fig. 4 Comparison between Bi-SOM and some bi-clustering meth-

ods, applied to noisy data. a Constant bi-clusters. b Additive bi-

clusters

Fig. 6 Comparison between Bi-SOM and some bi-clustering meth-

ods, applied to overlapped data. a Constant bi-clusters. b Additive bi-

clusters
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neurons having the same color in Fig. 7a. We then obtained

ten (10) blocks of dimension (10 9 10), each block is

overlapped by one row and one column with the block

which precedes it in the diagonal. That corresponds

perfectly to the correct partition of this data set (Match

Score = 1).

Fig. 8 Results of the bi-clustering on Leukemia data set: a the

obtained blocks. b The map projected on the data space. c The

obtained macro-blocks. d Macro-blocks after the reduction of

dimension. e, g the map optimized before the reduction of dimension.

f, h the map optimized after the reduction of dimension

Fig. 7 Results of Bi-SOM

applied to the correct version of

Prelic3 data set, with a rate of

overlapping equal to 10 %.

a The segmented map. b The

obtained blocks
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4.4 Results on real data

In this phase of experiments, Bi-SOM is applied on the

Leukemia data set in order to visualize the results of the bi-

clustering and the dimensionality reduction. First, we

applied the Kohonen heuristic for calculating the dimen-

sions of the map [20]. We obtained (13 9 8).

After the learning of the map, we build bi-clusters rel-

ative to neurons, and we create a binary matrix D, such that

Dij = 1 if the row i and the column j are classified together,

Dij = 0 otherwise. This matrix is rearranged to visualize

the obtained blocks, where each block in Fig. 8a represents

the neuron having the same color in Fig. 8b. After that, we

apply the AHC algorithm (with ‘‘Ward’’ based agglomer-

ative criterion) to group the close neurons together in

macro-bloks. The Fig. 8e, g show the neurons of the map

distributed in two classes (1:AML and 2:ALL) corre-

sponding to the two macro-blocks in Fig. 8c. The Fig. 8f, h

show the distribution of the map’s neurons in two classes

corresponding to the two macro-blocks in Fig. 8d after

dimensionality reduction.

The neurons having the label (B) represent the classes

containing irrelevant features, which corresponds to the

black neurons in Fig. 8g. The white neurons (without

labels) in Fig. 8g, h represent the empty classes that do not

contain neither instances nor features. Their existence

represents the smoothing property of the SOM algorithm.

After the first learning of the map, the neurons are

projected according to the distribution of the data (Fig. 8b).

After the rearrangement of the binary matrix D, each bi-

cluster corresponds to an active neuron which contains

instances and features (Fig. 8a). We can remark that our

method allows the overlapping in rows and/or columns.

The most important remark is that the white space in the

right of the bi-clusters in Fig. 8a, c corresponds to the

features that are not classified in classes containing

instances. These features are considered as irrelevant for

the bi-clustering and so eliminated from the initial data

matrix. Therefore, the dimension of the map is reduced

(Fig. 8g before and Fig. 8h after the dimensionality

reduction).

For comparing our approach with the other bi-clustering

approaches, we used the tool BiCAT (Bi-clustering Anal-

ysis Toolbox) available in http://www.tik.ee.ethz.ch/*sop/

bicat/. It is a tool of biological data analysis, with two

known clustering methods (k-means and AHC (with

‘‘Ward’’ based agglomerative criterion)) and five bi-clus-

tering approaches: (BiMax, ISA, Samba, CC, OPSM).

We applied all the methods on the real data sets (Breast,

Heart, Ovarian and Leukemia). The performances of the

obtained partitions are presented in Tables 3, 4, 5, 6. Note

that BicAT did not detect bi-clusters by applying the

method ISA on Breast data set (Table 3).

The overall results of Bi-SOM are very encouraging on

all the used indices. We can see that Bi-SOM provides

partitions with a best quality in comparison with the other

methods, except in some cases with the method BiMax. For

example, for Leukemia data set, this method produced

the best results of Jaccard index, Match score and

Relevance.

Table 3 Performances of Bi-SOM on Breast data set

Index K-means AHC ISA CC OPSM BiMax Bi-SOM

Jaccard 0.242 0.548 – 0.618 0.511 0.650 0.884

RI 0.583 0.553 – 0.737 0.576 0.730 0.934

ARI 0.219 0.016 – 0.492 0.107 0.448 0.866

Match

Score

0.194 0.137 – 0.173 0.458 0.049 0.928

Relevance 0.105 0.260 – 0.156 0.136 0.007 0.963

Table 4 Performances of Bi-SOM on Heart data set

Index K-means AHC ISA CC OPSM BiMax Bi-SOM

Jaccard 0.118 0.490 0.500 0.403 0.502 0.376 0.547

RI 0.513 0.502 0.500 0.530 0.502 0.522 0.581

ARI 0.030 0.007 0.005 0.060 0.000 0.044 0.128

Match

Score

0.125 0.114 0.428 0.114 0.372 0.227 0.603

Relevance 0.061 0.264 0.267 0.114 0.124 0.292 0.683

Table 5 Performances of Bi-SOM on Ovarian data set

Index K-means AHC ISA CC OPSM BiMax Bi-SOM

Jaccard 0.208 0.453 0.396 0.497 0.497 0.585 0.701

RI 0.546 0.491 0.586 0.497 0.497 0.620 0.747

ARI 0.088 0.013 0.171 0.000 0.000 0.474 0.534

Match

Score

0.150 0.130 0.394 0.556 0.324 0.686 0.898

Relevance 0.092 0.259 0.228 0.133 0.443 0.814 0.927

Table 6 Performances of Bi-SOM on Leukemia data set

Index K-means AHC ISA CC OPSM BiMax Bi-SOM

Jaccard 0.204 0.529 0.515 0.393 0.520 0.564 0.540

RI 0.549 0.559 0.489 0.516 0.520 0.588 0.604

ARI 0.148 0.059 0.017 0.021 0.000 0.284 0.325

Match

Score

0.169 0.162 0.435 0.099 0.241 0.662 0.578

Relevance 0.118 0.255 0.163 0.106 0.145 0.702 0.681
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4.5 Results of dimensionality reduction

For Bi-SOM, a feature is irrelevant if it does not charac-

terize no instance. In other terms, if it is classified in

neurons that do not contain instances. Bi-SOM proceeds

iteratively by deleting the irrelevant features and computes

again the bi-clustering with the new obtained data set. This

operation is repeated until deleting all irrelevant features

that represent the noise. In each iteration, we calculate the

performances of the obtained partition (Fig. 9).

Bi-SOM did not detect irrelevant features in both Breast

and Heart data sets, which contain 9 and 13 features,

respectively. However, the rate of irrelevant feature detection

is of (97%) forLeukemia and of (65%) forOvarian.We show

in Fig. 9a, c that the performances of Bi-SOM are weak when

it is applied to the initial data sets with irrelevant features.

The external indices (to be maximized) start with low

values and increase gradually. Hence, the Hubert index (to be

minimized) (Fig. 9b, d) indicates the quality of the partition

obtained byBi-SOM, by taking into account the instances and

the features of bi-clusters. The obtained values are always

close to 0 and show that this index is highly influenced by the

deletion of the irrelevant features. Bi-SOM realizes the best

performance with the totally reduced data set, (0.024) for

Leukemia for (0.150) with Ovarian.

5 Conclusion

In this paper, we proposed a new bi-clustering app-

roach, called Bi-SOM dedicated to continuous data. This

approach is based on the definition of a new link associ-

ating with each instance, the feature that characterizes it the

most. With Bi-SOM, we used the neighborhood informa-

tion offered by SOM to introduce a topology between the

obtained blocks. Then, we exploited this neighborhood

property to optimize the obtained partition by grouping the

blocks in macro-blocks.

Furthermore, Bi-SOM allowed us to reduce the dimen-

sionality of data, by detecting and deleting the irrelevant

features to improve the process of bi-clustering and conse-

quently, the quality of the obtained partition. The comparison

of the obtained results with the performances of the other bi-

clustering methods showed that our approach is robust to

noise, weakly sensitive to overlapping and remains competi-

tive with very encouraging performance rates.

There are several avenues that could be planned for

future research. First, since our proposal is sensitive to the

overlapping, we could investigate in a new procedure to

control this problem. Second, it would be interesting to

extend the method to deal with semi-supervised problems.

Finally, additional effort is needed to experiment the

method on very high-dimensional data.
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