A probabilistic and deterministic modular algorithm for computing Groebner basis over $\Q$. - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2013

A probabilistic and deterministic modular algorithm for computing Groebner basis over $\Q$.

Bernard Parisse

Résumé

Modular algorithm are widely used in computer algebra systems (CAS), for example to compute efficiently the gcd of multivariate polynomials. It is known to work to compute Groebner basis over $\Q$, but it does not seem to be popular among CAS implementers. In this paper, I will show how to check a candidate Groebner basis (obtained by reconstruction of several Groebner basis modulo distinct prime numbers) with a given error probability, that may be 0 if a certified Groebner basis is desired. This algorithm is now the default algorithm used by the Giac/Xcas computer algebra system with competitive timings, thanks to a trick that can accelerate computing Groebner basis modulo a prime once the computation has been done modulo another prime.
Fichier principal
Vignette du fichier
gb.pdf (90.36 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00862416 , version 1 (16-09-2013)
hal-00862416 , version 2 (18-11-2013)

Identifiants

Citer

Bernard Parisse. A probabilistic and deterministic modular algorithm for computing Groebner basis over $\Q$.. 2013. ⟨hal-00862416v2⟩

Collections

CNRS FOURIER INSMI
95 Consultations
515 Téléchargements

Altmetric

Partager

More