
HAL Id: hal-00862416
https://hal.science/hal-00862416v2

Preprint submitted on 18 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A probabilistic and deterministic modular algorithm for
computing Groebner basis over .

Bernard Parisse

To cite this version:
Bernard Parisse. A probabilistic and deterministic modular algorithm for computing Groebner basis
over .. 2013. �hal-00862416v2�

https://hal.science/hal-00862416v2
https://hal.archives-ouvertes.fr


A probabilistic and deterministic modular

algorithm for computing Groebner basis over Q.

Bernard Parisse

Institut Fourier

UMR 5582 du CNRS

Université de Grenoble I

2013

Abstract

Modular algorithm are widely used in computer algebra systems (CAS), for

example to compute efficiently the gcd of multivariate polynomials. It is known to

work to compute Groebner basis over Q, but it does not seem to be popular among

CAS implementers. In this paper, I will show how to check a candidate Groebner

basis (obtained by reconstruction of several Groebner basis modulo distinct prime

numbers) with a given error probability, that may be 0 if a certified Groebner basis

is desired. This algorithm is now the default algorithm used by the Giac/Xcas com-

puter algebra system with competitive timings, thanks to a trick that can accelerate

computing Groebner basis modulo a prime once the computation has been done

modulo another prime.

1 Introduction

During the last decades, considerable improvements have been made in CAS like

Maple or specialized systems like Magma, Singular, Cocoa, Macaulay... to compute

Groebner basis. They were driven by implementations of new algorithms speeding up

the original Buchberger ([3]) algorithm: Gebauer and Möller criterion ([6]), F4 and F5

algorithms from J.-C. Faugère ([4], [5]), and are widely described in the literature if

the base field is a finite field. Much less was said about computing over Q. It seems

that implementers are using the same algorithm as for finite fields, this time working

with coefficients in Q or in Z (sometimes with fast integer linear algebra), despite the

fact that an efficient p-adic or Chinese remaindering algorithm were described as soon

as in year 2000 by E. Arnold ([1]). The reason might well be that these modular algo-

rithms suffer from a time-consuming step at the end: checking that the reconstructed

Groebner basis is indeed the correct Groebner basis.

Section 2 will show that if one accepts a small error probability, this check may be

fast, so we can let the user choose between a fast conjectural Groebner basis to make his

own conjectures and a slower certified Groebner basis once he needs a mathematical

proof.

1



Section 3 will explain learning, a process that can accelerate the computation of

a Groebner basis modulo a prime pk once the same computation but modulo another

prime p has already been done ; learning is an alternative to the F5 algorithm in or-

der to avoid computing useless critical pairs that reduce to 0. The idea is similar to

F4remake by Joux-Vitse ([7]) used in the context of computing Groebner basis in

large finite fields.

Section 4 will show in more details how the gbasis algorithm is implemented in

Giac/Xcas ([9]) and show that - at least for the classical academic benchmarks Cyclic

and Katsura - the deterministic modular algorithm is competitive or faster than the best

open-source implementations and the modular probabilistic algorithm is comparable

to Maple and slower than Magma on one processor (at least for moderate integer co-

efficient size) and may be faster than Magma on multi-processors, while computation

modulo p are faster for characteristics in the 24-31 bits range. Moreover the modular

algorithm memory usage is essentially twice the memory required to store the basis on

Q, sometimes much less than the memory required by other algorithms.

2 Checking a reconstructed Groebner basis

Let f1, .., fm be polynomials in Q[x1, .., xn], I =< f1, ..., fm > be the ideal generated

by f1, ..., fn. Without loss of generality, we may assume that the fi have coefficients in

Z by multiplying by the least common multiple of the denominators of the coefficients

of fi. We may also assume that the fi are primitive by dividing by their content.

Let < be a total monomial ordering (for example revlex the total degree reverse

lexicographic ordering). We want to compute the Groebner basis G of I over Q (and

more precisely the inter-reduced Groebner basis, sorted with respect to <). Now con-

sider the ideal Ip generated by the same fi but with coefficients in Z/pZ for a prime

p. Let Gp be the Groebner basis of Ip (also assumed to be inter-reduced, sorted with

respect to <, and with all leading coefficients equal to 1).

Assume we compute G by the Buchberger algorithm with Gebauer and Möller cri-

terion, and we reduce in Z (by multiplying the s-poly to be reduced by appropriate

leading coefficients), if no leading coefficient in the polynomials are divisible by p, we

will get by the same process but computing modulo p the Gp Groebner basis. There-

fore the computation can be done in parallel in Z and in Z/pZ except for a finite set

of unlucky primes (since the number of intermediate polynomials generated in the al-

gorithm is finite). If we are choosing our primes sufficiently large (e.g. about 231), the

probability to fall on an unlucky prime is very small (less than the number of generated

polynomials divided by about 231, even for really large examples like Cyclic9 where

there are a few 104 polynomials involved, it would be about 1e-5).

The Chinese remaindering algorithm is as follow: compute Gp for several primes,

for all primes that have the same leading monomials in Gp (i.e. if coefficient values

are ignored), reconstruct G∏
pj

by Chinese remaindering, then reconstruct a candidate

Groebner basis Gc in Q by Farey reconstruction. Once it stabilizes, do the checking

step described below, and return Gc on success.

Checking step : check that the original fi polynomials reduce to 0 with respect to

Gc and check that Gc is a Groebner basis.

2



Theorem 1 (Arnold) If the checking step succeeds, then Gc is the Groebner basis of I .

This is a consequence of ideal inclusions (first check) and dimensions (second

check), for a complete proof, see [1].

Probabilistic checking algorithm: instead of checking that s-polys of critical pairs

of Gc reduce to 0, check that the s-polys reduce to 0 modulo several primes that do not

divide the leading coefficients of Gc and stop as soon as the inverse of the product of

these primes is less than a fixed ε > 0.

Deterministic checking algorithm: check that all s-polys reduce to 0 overQ. This

can be done either by integer computations (or even by rational computations, I have

not tried that), or by reconstruction of the quotients using modular reduction to 0 over

Z/pZ for sufficiently many primes. Once the reconstructed quotients stabilize, we can

check the 0-reduction identity, and this can be done without computing the products

quotients by elements of Gc if we have enough primes (with appropriate bounds on the

coefficients of Gc and the lcm of the denominators of the reconstructed quotients).

3 Speeding up by learning from previous primes

Once we have computed a Groebner basis modulo an initial prime p, if p is not an

unlucky prime, then we can speedup computing Groebner basis modulo other lucky

primes. Indeed, if one s-poly reduce to 0 modulo p, then it reduces most certainly

to 0 on Q (non zero s-poly have in general several terms, cancellation of one term

mod p has probability 1/p, simultaneous cancellation of several terms of a non-zero

s-poly modulo p is highly improbable), and we discard this s-poly in the next primes

computations. We name this speedup process learning. It can also be applied on other

parts of the Groebner basis computation, like the symbolic preprocessing of the F4

algorithm, where we can reuse the same collection of monomials that were used for

the first prime p to build matrices for next primes (see Buchberger Algorithm with F4

linear algebra in the next section).

If we use learning, we have no certification that the computation ends up with

a Groebner basis modulo the new primes. But this is not a problem, since it is not

required by the checking correctness proof, the only requirement is that the new gen-

erated ideal is contained in the initial ideal modulo all primes (which is still true) and

that the reconstructed Gc is a Groebner basis.

4 Giac/Xcas implementation and experimentation

We describe here briefly some details of the Giac/Xcas gbasis implementation and give

a few benchmarks.

The optimized algorithm runs with revlex as < ordering if the polynomials have at

most 15 variables (it’s easy to modify for more variables, adding multiples of 4, but this

will increase a little memory required and slow down a little). Partial and total degrees

are coded as 16 bits integers (hence the 15 variables limit, since 1 slot of 16 bits is kept

for total degree). Modular coefficients are coded as 31 bit integers (or 24).

3



The Buchberger algorithm with linear algebra from the F4 algorithm is imple-

mented modulo primes smaller than 231 using total degree as selection criterion for

critical pairs.

Buchberger algorithm with F4 linear algebra modulo a prime

1. Initialize the basis to the empty list, and a list of critical pairs to empty

2. Add one by one all the fi to the basis and update the list of critical pairs with

Gebauer and Möller criterion, by calling the gbasis update procedure (described

below step 9)

3. Begin of a new iteration:

All pairs of minimal total degree are collected to be reduced simultaneously, they

are removed from the list of critical pairs.

4. The symbolic preprocessing step begins by creating a list of monomials, gluing

together all monomials of the corresponding s-polys (this is done with a heap

data structure).

5. The list of monomials is “reduced” by division with respect to the current basis,

using heap division (like Monagan-Pearce [8]) without taking care of the real

value of coefficients. This gives a list of all possible remainder monomials and a

list of all possible quotient monomials and a list of all quotient times correspond-

ing basis element monomial products. This last list together with the remainder

monomial list is the list of all possible monomials that may be generated reduc-

ing the list of critical pairs of maximal total degree, it is ordered with respect to

<. We record these lists for further primes during the first prime computation.

6. The list of quotient monomials is multiplied by the corresponding elements of the

current basis, this time doing the coefficient arithmetic. The result is recorded

in a sparse matrix, each row has a pointer to a list of coefficients (the list of

coefficients is in general shared by many rows, the rows have the same reductor

with a different monomial shift), and a list of monomial indices (where the index

is relative to the ordered list of possible monomials). We sort the matrix by

decreasing order of leading monomial.

7. Each s-polynomial is written as a dense vector with respect to the list of all

possible monomials, and reduced with respect to the sparse matrix, by decreasing

order with respect to <. (To avoid reducing modulo p each time, we are using

a dense vector of 128 bits integers on 64 bits architectures, and we reduce mod

p only at the end of the reduction. If we work on 24 bit signed integers, we can

use a dense vector of 63 bits signed integer and reduce the vector if the number

of rows is greater than 215).

8. Then inter-reduction happens on all the dense vectors representing the reduced s-

polynomials, this is dense row reduction to echelon form (0 columns are removed

first). Care must be taken at this step to keep row ordering when learning is

active.

4



9. gbasis update procedure

Each non zero row will bring a new entry in the current basis (we record zero re-

ducing pairs during the first prime iteration, this information will be used during

later iterations with other primes to avoid computing and reducing useless criti-

cal pairs). New critical pairs are created with this new entry (discarding useless

pairs by applying Gebauer-Möller criterion). An old entry in the basis may be

removed if it’s leading monomial has all partial degrees greater or equal to the

leading monomial corresponding degree of the new entry. Old entries may also

be reduced with respect to the new entries at this step or at the end of the main

loop.

10. If there are new critical pairs remaining start a new iteration (step 3). Otherwise

the current basis is the Groebner basis.

Modular algorithm

1. Set a list of reconstructed basis to empty.

2. Learning prime: Take a prime number of 31 bits or 29 bits for pseudo division,

run the Buchberger algorithm modulo this prime recording symbolic preprocess-

ing data and the list of critical pairs reducing to 0.

3. Loop begin: Take a prime of 29 bits size or a list of n primes if n processors are

available. Run the Buchberger algorithm. Check if the output has the same lead-

ing terms than one of the chinese remainder reconstructed outputs from previous

primes, if so combine them by Chinese remaindering and go to step 4, otherwise

add a new entry in the list of reconstructed basis and continue with next prime at

step 3 (clearing all learning data is probably a good idea here).

4. If the Farey Q-reconstructed basis is not identical to the previous one, go to the

loop iteration step 3 (a fast way to check that is to reconstruct with all primes but

the last one, and check the value modulo the last prime). If they are identical,

run the final check : the initial polynomials fi must reduce to 0 modulo the

reconstructed basis and the reconstructed basis s-polys must reduce to 0 (this

is done on Q either directly or by modular reconstruction for the deterministic

algorithm, or checked modulo several primes for the probabilistic algorithm).

On success output the Q Groebner basis, otherwise continue with next prime at

step 3.

Benchmarks

Comparison of giac (1.1.0-26) with Singular 3.1 (from sage 5.10) on Mac OS X.6,

Dual Core i5 2.3Ghz, RAM 2*2Go:

• Mod timings were computed modulonextprime(2^24) and modulo 1073741827

(nexprime(2^30)).

• Probabilistic check on Q depends linearly on log of precision, two timings are

reported, one with error probability less than 1e-7, and the second one for

1e-16.

5



• Check on Q in giac can be done with integer or modular computations hence two

times are reported.

• >> means timeout (3/4h or more) or memory exhausted (Katsura12 modular

1e-16 check with giac) or test not done because it would obviously timeout

(e.g. Cyclic8 or 9 on Q with Singular)

giac mod p giac singular giac Q prob. giac Q singular

24, 31 bits run2 mod p 1e-7, 1e-16 certified Q

Cyclic7 0.5, 0.58 0.1 2.0 3.5, 4.2 21, 29.3 >2700

Cyclic8 7.2, 8.9 1.8 52.5 103, 106 258, 679 »

Cyclic9 633, 1340 200 ? 1 day » »

Kat8 0.063, 0.074 0.009 0.2 0.33, 0.53 6.55, 4.35 4.9

Kat9 0.29, 0.39 0.05 1.37 2.1, 3.2 54, 36 41

Kat10 1.53, 2.27 0.3 11.65 14, 20.7 441, 335 480

Kat11 10.4, 13.8 2.8 86.8 170, 210 4610 ?

Kat12 76, 103 27 885 1950, RAM RAM »

alea6 0.83, 1.08 .26 4.18 202, 204 738, » >1h

This leads to the following observations :

• Computation modulo p for 24 to 31 bits is faster that Singular, but seems also

faster than magma (and maple). For smaller primes, magma is 2 to 3 times faster.

• The probabilistic algorithm on Q is much faster than Singular on these examples.

Compared to maple16, it is reported to be faster for Katsura10, and as fast for

Cyclic8. Compared to magma, it is about 3 to 4 times slower.

• If [10] is up to date (except about giac), giac is the third software and first open-

source software to solve Cyclic9 on Q. It requires 378 primes of size 29 bits,

takes a little more than 1 day, requires 5Gb of memory on 1 processor, while with

6 processors it takes 8h30 (requires 16Gb). The answer has integer coefficients

of about 1600 digits (and not 800 unlike in J.-C. Faugère F4 article), for a little

more than 1 milliion monomials, that’s about 1.4Gb of RAM.

• The deterministic modular algorithm is much faster than Singular for Cyclic ex-

amples, and as fast for Katsura examples.

• For the random last example, the speed is comparable between magma and giac.

This is where there are less pairs reducing to 0 (learning is not as efficient as

for Cyclic or Katsura) and larger coefficients. This would suggest that advanced

algorithms like f4/f5/etc. are probably not much more efficient than Buchberger

algorithm for these kind of inputs without symmetries.

• Certification is the most time-consuming part of the process (except for Cyclic8).

Integer certification is significantly faster than modular certification for Cyclic

examples, and almost as fast for Katsura.

Example of Giac/Xcas code:

6



alea6 := [5*x^2*t+37*y*t*u+32*y*t*v+21*t*v+55*u*v,

39*x*y*v+23*y^2*u+57*y*z*u+56*y*u^2+10*z^2+52*t*u*v,

33*x^2*t+51*x^2+42*x*t*v+51*y^2*u+32*y*t^2+v^3,

44*x*t^2+42*y*t+47*y*u^2+12*z*t+2*z*u*v+43*t*u^2,

49*x^2*z+11*x*y*z+39*x*t*u+44*x*t*u+54*x*t+45*y^2*u,

48*x*z*t+2*z^2*t+59*z^2*v+17*z+36*t^3+45*u];

l:=[x,y,z,t,u,v];

p1:=prevprime(2^24); p2:=prevprime(2^29);

time(G1:=gbasis(alea6 % p1,l,revlex));

time(G2:=gbasis(alea6 % p2,l,revlex));

threads:=2; // set the number of threads you want to use

// debug_infolevel(1); // uncomment to show intermediate steps

proba_epsilon:=1e-7; // probabilistic algorithm.

time(H0:=gbasis(alea6,indets(cyclic5),revlex));

proba_epsilon:=0; // deterministic

time(H1:=gbasis(alea6,indets(cyclic5),revlex));

time(H2:=gbasis(alea6,indets(cyclic5),revlex,modular_check));

size(G1),size(G2),size(H0),size(H1),size(H2);

write("Halea6",H0);

Note that for small examples (like Cyclic5), the system performs always the determin-

istic check (this is the case if the number of elements of the reconstructed basis to

50).

5 Conclusion

I have described some enhancements to a modular algorithm to compute Groebner

basis overQ which, combined to linear algebra from F4, gives a sometimes much faster

open-source implementation than state-of-the-art open-source implementations for the

deterministic algorithm. The probabilistic algorithm is also not ridiculous compared to

the best publicly available closed-source implementations, while being much easier to

implement (about 10K lines of code, while Fgb is said to be 200K lines of code, no

need to have highly optimized sparse linear algebra).

This should speed up conjectures with the probabilistic algorithm and automated

proofs using the deterministic algorithm (e.g. for the Geogebra theorem prover [2]),

either using Giac/Xcas (or one of it’s interfaces to java and python) or adapting it’s im-

plementation to other open-source systems. With fast closed-source implementations

(like maple or magma), there is no certification that the result is a Groebner basis : there

might be some hidden probabilistic step somewhere, in integer linear system reduction

for example. I have no indication that it’s the case but one can never know if the code

is not public, and at least for my implementation, certification might take a lot more

time than computation.

There is still room for additions and improvements

• the checking step can certainly be improved using knowledge on how the basis

element modulo p where built.

7



• checking could also benefit from parallelization.

• As an alternative to the modular algorithm, a first learning run could be done

modulo a 24 bits prime, and the collected info used for f4 on Q as a probabilistic

alternative to F5.

• FGLM conversion is still not optimized and therefore slow in Giac/Xcas,

Acknowledgements

Thanks to Frédéric Han for interfacing giac with Python. Thanks to Vanessa Vitse for

insightfull discussions.

References

[1] E. A. Arnold. Modular algorithms for computing Gröbner bases . Journal of

Symbolic Computation, 35(4):403 – 419, 2003.

[2] F. Botana, Z. Kovács, and S. Weitzhofer. Implementing theorem proving in ge-

ogebra by using a singular webservice.

[3] B. Buchberger. Grobner bases: An algorithmic method in polynomial ideal the-

ory. Multidimensional systems theory, pages 184–232, 1985.

[4] J.-C. Faugère. A new efficient algorithm for computing Gröbner bases (F4). Jour-

nal of Pure and Applied Algebra, 139(1–3):61–88, June 1999.

[5] J.-C. Faugère. A new efficient algorithm for computing Gröbner bases without

reduction to zero (F5). In Proceedings of the 2002 international symposium on

Symbolic and algebraic computation, ISSAC ’02, pages 75–83, New York, NY,

USA, 2002. ACM.

[6] R. Gebauer and H. M. Möller. On an installation of buchberger’s algorithm. Jour-

nal of Symbolic Computation, 6(2–3):275 – 286, 1988.

[7] A. Joux and V. Vitse. A variant of the F4 algorithm. In Topics in Cryptology–CT-

RSA 2011, pages 356–375. Springer, 2011.

[8] M. Monagan and R. Pearce. Sparse polynomial division using a heap. Journal of

Symbolic Computation, 46(7):807–822, 2011.

[9] B. Parisse and R. D. Graeve. Giac/Xcas computer algebra system.

http://www-fourier.ujf-grenoble.fr/˜parisse/giac_fr.html,

2013.

[10] A. Steel. Gröbner Basis Timings Page.

http://magma.maths.usyd.edu.au/˜allan/gb/, 2004.

8


	Introduction
	Checking a reconstructed Groebner basis
	Speeding up by learning from previous primes
	Giac/Xcas implementation and experimentation
	Conclusion

