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A probabilistic and deterministic modular algorithm for computing Groebner basis over Q

Modular algorithm are widely used in computer algebra systems (CAS), for example to compute efficiently the gcd of multivariate polynomials. It is known to work to compute Groebner basis over Q, but it does not seem to be popular among CAS implementers. In this paper, I will show how to check a candidate Groebner basis (obtained by reconstruction of several Groebner basis modulo distinct prime numbers) with a given error probability, that may be 0 if a certified Groebner basis is desired. This algorithm is now the default algorithm used by the Giac/Xcas computer algebra system with competitive timings, thanks to a trick that can accelerate computing Groebner basis modulo a prime once the computation has been done modulo another prime.

Introduction

During the last decades, considerable improvements have been made in CAS like Maple or specialized systems like Magma, Singular, Cocoa, Macaulay... to compute Groebner basis. They were driven by implementations of new algorithms speeding up the original Buchberger ([3]) algorithm: Gebauer and Möller criterion ( [START_REF] Gebauer | On an installation of buchberger's algorithm[END_REF]), F4 and F5 algorithms from J.-C. Faugère ([4], [START_REF] Faugère | A new efficient algorithm for computing Gröbner bases without reduction to zero (F5)[END_REF]), and are widely described in the literature if the base field is a finite field. Much less was said about computing over Q. It seems that implementers are using the same algorithm as for finite fields, this time working with coefficients in Q or in Z (sometimes with fast integer linear algebra), despite the fact that an efficient p-adic or Chinese remaindering algorithm were described as soon as in year 2000 by E. Arnold ([1]). The reason might well be that these modular algorithms suffer from a time-consuming step at the end: checking that the reconstructed Groebner basis is indeed the correct Groebner basis.

Section 2 will show that if one accepts a small error probability, this check may be fast, so we can let the user choose between a fast conjectural Groebner basis to make his own conjectures and a slower certified Groebner basis once he needs a mathematical proof.

1 Section 3 will explain learning, a process that can accelerate the computation of a Groebner basis modulo a prime p k once the same computation but modulo another prime p has already been done ; learning is an alternative to the F5 algorithm in order to avoid computing useless critical pairs that reduce to 0. The idea is similar to F4remake by Joux-Vitse ( [START_REF] Joux | A variant of the F4 algorithm[END_REF]) used in the context of computing Groebner basis in large finite fields. Section 4 will show in more details how the gbasis algorithm is implemented in Giac/Xcas ( [START_REF] Parisse | Giac/Xcas computer algebra system[END_REF]) and show that -at least for the classical academic benchmarks Cyclic and Katsura -the deterministic modular algorithm is competitive or faster than the best open-source implementations and the modular probabilistic algorithm is comparable to Maple and slower than Magma on one processor (at least for moderate integer coefficient size) and may be faster than Magma on multi-processors, while computation modulo p are faster for characteristics in the 24-31 bits range. Moreover the modular algorithm memory usage is essentially twice the memory required to store the basis on Q, sometimes much less than the memory required by other algorithms.

Checking a reconstructed Groebner basis

Let f 1 , .., f m be polynomials in Q[x 1 , .., x n ], I =< f 1 , ..., f m > be the ideal generated by f 1 , ..., f n . Without loss of generality, we may assume that the f i have coefficients in Z by multiplying by the least common multiple of the denominators of the coefficients of f i . We may also assume that the f i are primitive by dividing by their content.

Let < be a total monomial ordering (for example revlex the total degree reverse lexicographic ordering). We want to compute the Groebner basis G of I over Q (and more precisely the inter-reduced Groebner basis, sorted with respect to <). Now consider the ideal I p generated by the same f i but with coefficients in Z/pZ for a prime p. Let G p be the Groebner basis of I p (also assumed to be inter-reduced, sorted with respect to <, and with all leading coefficients equal to 1).

Assume we compute G by the Buchberger algorithm with Gebauer and Möller criterion, and we reduce in Z (by multiplying the s-poly to be reduced by appropriate leading coefficients), if no leading coefficient in the polynomials are divisible by p, we will get by the same process but computing modulo p the G p Groebner basis. Therefore the computation can be done in parallel in Z and in Z/pZ except for a finite set of unlucky primes (since the number of intermediate polynomials generated in the algorithm is finite). If we are choosing our primes sufficiently large (e.g. about 2 31 ), the probability to fall on an unlucky prime is very small (less than the number of generated polynomials divided by about 2 31 , even for really large examples like Cyclic9 where there are a few 10 4 polynomials involved, it would be about 1e-5).

The Chinese remaindering algorithm is as follow: compute G p for several primes, for all primes that have the same leading monomials in G p (i.e. if coefficient values are ignored), reconstruct G pj by Chinese remaindering, then reconstruct a candidate Groebner basis G c in Q by Farey reconstruction. Once it stabilizes, do the checking step described below, and return G c on success.

Checking step : check that the original f i polynomials reduce to 0 with respect to G c and check that G c is a Groebner basis.

Theorem 1 (Arnold) If the checking step succeeds, then G c is the Groebner basis of I. This is a consequence of ideal inclusions (first check) and dimensions (second check), for a complete proof, see [START_REF] Arnold | Modular algorithms for computing Gröbner bases[END_REF].

Probabilistic checking algorithm: instead of checking that s-polys of critical pairs of G c reduce to 0, check that the s-polys reduce to 0 modulo several primes that do not divide the leading coefficients of G c and stop as soon as the inverse of the product of these primes is less than a fixed ε > 0.

Deterministic checking algorithm: check that all s-polys reduce to 0 over Q. This can be done either by integer computations (or even by rational computations, I have not tried that), or by reconstruction of the quotients using modular reduction to 0 over Z/pZ for sufficiently many primes. Once the reconstructed quotients stabilize, we can check the 0-reduction identity, and this can be done without computing the products quotients by elements of G c if we have enough primes (with appropriate bounds on the coefficients of G c and the lcm of the denominators of the reconstructed quotients).

Speeding up by learning from previous primes

Once we have computed a Groebner basis modulo an initial prime p, if p is not an unlucky prime, then we can speedup computing Groebner basis modulo other lucky primes. Indeed, if one s-poly reduce to 0 modulo p, then it reduces most certainly to 0 on Q (non zero s-poly have in general several terms, cancellation of one term mod p has probability 1/p, simultaneous cancellation of several terms of a non-zero s-poly modulo p is highly improbable), and we discard this s-poly in the next primes computations. We name this speedup process learning. It can also be applied on other parts of the Groebner basis computation, like the symbolic preprocessing of the F4 algorithm, where we can reuse the same collection of monomials that were used for the first prime p to build matrices for next primes (see Buchberger Algorithm with F4 linear algebra in the next section).

If we use learning, we have no certification that the computation ends up with a Groebner basis modulo the new primes. But this is not a problem, since it is not required by the checking correctness proof, the only requirement is that the new generated ideal is contained in the initial ideal modulo all primes (which is still true) and that the reconstructed G c is a Groebner basis.

Giac/Xcas implementation and experimentation

We describe here briefly some details of the Giac/Xcas gbasis implementation and give a few benchmarks.

The optimized algorithm runs with revlex as < ordering if the polynomials have at most 15 variables (it's easy to modify for more variables, adding multiples of 4, but this will increase a little memory required and slow down a little). Partial and total degrees are coded as 16 bits integers (hence the 15 variables limit, since 1 slot of 16 bits is kept for total degree). Modular coefficients are coded as 31 bit integers (or 24).

The Buchberger algorithm with linear algebra from the F4 algorithm is implemented modulo primes smaller than 2 31 using total degree as selection criterion for critical pairs. Buchberger algorithm with F4 linear algebra modulo a prime 1. Initialize the basis to the empty list, and a list of critical pairs to empty 2. Add one by one all the f i to the basis and update the list of critical pairs with Gebauer and Möller criterion, by calling the gbasis update procedure (described below step 9)

Begin of a new iteration:

All pairs of minimal total degree are collected to be reduced simultaneously, they are removed from the list of critical pairs.

4. The symbolic preprocessing step begins by creating a list of monomials, gluing together all monomials of the corresponding s-polys (this is done with a heap data structure).

5. The list of monomials is "reduced" by division with respect to the current basis, using heap division (like Monagan-Pearce [START_REF] Monagan | Sparse polynomial division using a heap[END_REF]) without taking care of the real value of coefficients. This gives a list of all possible remainder monomials and a list of all possible quotient monomials and a list of all quotient times corresponding basis element monomial products. This last list together with the remainder monomial list is the list of all possible monomials that may be generated reducing the list of critical pairs of maximal total degree, it is ordered with respect to <. We record these lists for further primes during the first prime computation.

6. The list of quotient monomials is multiplied by the corresponding elements of the current basis, this time doing the coefficient arithmetic. The result is recorded in a sparse matrix, each row has a pointer to a list of coefficients (the list of coefficients is in general shared by many rows, the rows have the same reductor with a different monomial shift), and a list of monomial indices (where the index is relative to the ordered list of possible monomials). We sort the matrix by decreasing order of leading monomial.

7.

Each s-polynomial is written as a dense vector with respect to the list of all possible monomials, and reduced with respect to the sparse matrix, by decreasing order with respect to <. (To avoid reducing modulo p each time, we are using a dense vector of 128 bits integers on 64 bits architectures, and we reduce mod p only at the end of the reduction. If we work on 24 bit signed integers, we can use a dense vector of 63 bits signed integer and reduce the vector if the number of rows is greater than 2 15 ).

8. Then inter-reduction happens on all the dense vectors representing the reduced spolynomials, this is dense row reduction to echelon form (0 columns are removed first). Care must be taken at this step to keep row ordering when learning is active.

9. gbasis update procedure Each non zero row will bring a new entry in the current basis (we record zero reducing pairs during the first prime iteration, this information will be used during later iterations with other primes to avoid computing and reducing useless critical pairs). New critical pairs are created with this new entry (discarding useless pairs by applying Gebauer-Möller criterion). An old entry in the basis may be removed if it's leading monomial has all partial degrees greater or equal to the leading monomial corresponding degree of the new entry. Old entries may also be reduced with respect to the new entries at this step or at the end of the main loop.

10. If there are new critical pairs remaining start a new iteration (step 3). Otherwise the current basis is the Groebner basis.

Modular algorithm

1. Set a list of reconstructed basis to empty.

2. Learning prime: Take a prime number of 31 bits or 29 bits for pseudo division, run the Buchberger algorithm modulo this prime recording symbolic preprocessing data and the list of critical pairs reducing to 0.

3. Loop begin: Take a prime of 29 bits size or a list of n primes if n processors are available. Run the Buchberger algorithm. Check if the output has the same leading terms than one of the chinese remainder reconstructed outputs from previous primes, if so combine them by Chinese remaindering and go to step 4, otherwise add a new entry in the list of reconstructed basis and continue with next prime at step 3 (clearing all learning data is probably a good idea here).

4. If the Farey Q-reconstructed basis is not identical to the previous one, go to the loop iteration step 3 (a fast way to check that is to reconstruct with all primes but the last one, and check the value modulo the last prime). If they are identical, run the final check : the initial polynomials f i must reduce to 0 modulo the reconstructed basis and the reconstructed basis s-polys must reduce to 0 (this is done on Q either directly or by modular reconstruction for the deterministic algorithm, or checked modulo several primes for the probabilistic algorithm). On success output the Q Groebner basis, otherwise continue with next prime at step 3.

Benchmarks Comparison of giac (1.1.0-26) with Singular 3.1 (from sage 5.10) on Mac OS X.6, Dual Core i5 2.3Ghz, RAM 2*2Go:

• Mod timings were computed modulo nextprime(2^24) and modulo 1073741827 (nexprime(2^30)).

• Probabilistic check on Q depends linearly on log of precision, two timings are reported, one with error probability less than 1e-7, and the second one for 1e-16.

• Check on Q in giac can be done with integer or modular computations hence two times are reported. • Computation modulo p for 24 to 31 bits is faster that Singular, but seems also faster than magma (and maple). For smaller primes, magma is 2 to 3 times faster.

• The probabilistic algorithm on Q is much faster than Singular on these examples.

Compared to maple16, it is reported to be faster for Katsura10, and as fast for Cyclic8. Compared to magma, it is about 3 to 4 times slower.

• If [START_REF] Steel | Gröbner Basis Timings Page[END_REF] is up to date (except about giac), giac is the third software and first opensource software to solve Cyclic9 on Q. It requires 378 primes of size 29 bits, takes a little more than 1 day, requires 5Gb of memory on 1 processor, while with 6 processors it takes 8h30 (requires 16Gb). The answer has integer coefficients of about 1600 digits (and not 800 unlike in J.-C. Faugère F4 article), for a little more than 1 milliion monomials, that's about 1.4Gb of RAM.

• The deterministic modular algorithm is much faster than Singular for Cyclic examples, and as fast for Katsura examples.

• For the random last example, the speed is comparable between magma and giac. This is where there are less pairs reducing to 0 (learning is not as efficient as for Cyclic or Katsura) and larger coefficients. This would suggest that advanced algorithms like f4/f5/etc. are probably not much more efficient than Buchberger algorithm for these kind of inputs without symmetries.

• Certification is the most time-consuming part of the process (except for Cyclic8 Note that for small examples (like Cyclic5), the system performs always the deterministic check (this is the case if the number of elements of the reconstructed basis to 50).

Conclusion

I have described some enhancements to a modular algorithm to compute Groebner basis over Q which, combined to linear algebra from F4, gives a sometimes much faster open-source implementation than state-of-the-art open-source implementations for the deterministic algorithm. The probabilistic algorithm is also not ridiculous compared to the best publicly available closed-source implementations, while being much easier to implement (about 10K lines of code, while Fgb is said to be 200K lines of code, no need to have highly optimized sparse linear algebra). This should speed up conjectures with the probabilistic algorithm and automated proofs using the deterministic algorithm (e.g. for the Geogebra theorem prover [START_REF] Botana | Implementing theorem proving in geogebra by using a singular webservice[END_REF]), either using Giac/Xcas (or one of it's interfaces to java and python) or adapting it's implementation to other open-source systems. With fast closed-source implementations (like maple or magma), there is no certification that the result is a Groebner basis : there might be some hidden probabilistic step somewhere, in integer linear system reduction for example. I have no indication that it's the case but one can never know if the code is not public, and at least for my implementation, certification might take a lot more time than computation.

There is still room for additions and improvements

• the checking step can certainly be improved using knowledge on how the basis element modulo p where built.

• checking could also benefit from parallelization.

• As an alternative to the modular algorithm, a first learning run could be done modulo a 24 bits prime, and the collected info used for f4 on Q as a probabilistic alternative to F5.

• FGLM conversion is still not optimized and therefore slow in Giac/Xcas,
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