An Event-Controlled Online Trajectory Generator Based on the Human-Robot Interaction Force Processing - Archive ouverte HAL
Article Dans Une Revue Industrial Robot: An International Journal Année : 2014

An Event-Controlled Online Trajectory Generator Based on the Human-Robot Interaction Force Processing

Sarra Jlassi
  • Fonction : Auteur
  • PersonId : 928088
Yacine Chitour

Résumé

The problem of robotic co-manipulation is often addressed using impedance control based methods where we seek to establish a mathematical relation between the velocity of the human-robot interaction point and the force applied by the human operator at this point. This paper addresses the problem of co-manipulation for handling tasks seen as a constrained optimal control problem. The proposed point of view relies on the implementation of a specific online trajectory generator (OTG) associated to a kinematic feedback loop. This OTG is designed so as to translate the human operator intentions to ideal trajectories that the robot must follow. It works as an automaton with two states of motion whose transitions are controlled by comparing the magnitude of the force to an adjustable threshold, in order to enable the operator to keep authority over the robot's states of motion. To ensure the smoothness of the interaction, we propose to generate a velocity profile collinear to the force applied at the interaction point. The feedback control loop is then used to satisfy the requirements of stability and of trajectory tracking to guarantee assistance and operator security. The overall strategy is applied to the penducobot problem.
Fichier principal
Vignette du fichier
GeneTraj.pdf (589.71 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00861854 , version 1 (13-09-2013)

Identifiants

Citer

Sarra Jlassi, Sami Tliba, Yacine Chitour. An Event-Controlled Online Trajectory Generator Based on the Human-Robot Interaction Force Processing. Industrial Robot: An International Journal, 2014, 41 (1), pp.15-25. ⟨10.1108/IR-01-2013-317⟩. ⟨hal-00861854⟩
161 Consultations
591 Téléchargements

Altmetric

Partager

More