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Abstract

The problem of robotic co-manipulation is often addressed using impedance control based methods where

we seek to establish a mathematical relation between the velocity of the human-robot interaction point and

the force applied by the human operator at this point. This paper addresses the problem of co-manipulation

for handling tasks seen as a constrained optimal control problem. The proposed point of view relies on the

implementation of a specific online trajectory generator (OTG) associated to a kinematic feedback loop. This

OTG is designed so as to translate the human operator intentions to ideal trajectories that the robot must

follow. It works as an automaton with two states of motion whose transitions are controlled by comparing

the magnitude of the force to an adjustable threshold, in order to enable the operator to keep authority over

the robot’s states of motion. To ensure the smoothness of the interaction, we propose to generate a velocity

profile collinear to the force applied at the interaction point. The feedback control loop is then used to satisfy

the requirements of stability and of trajectory tracking to guarantee assistance and operator security. The

overall strategy is applied to the penducobot problem.

keywords: Co-manipulation for handling tasks, online trajectory generator, underactuated robots

1 Introduction

Robotics research is shifting its focus from industrial applications to human centered ones. The ultimate goal is

to reduce fatigue, improve the motions’ precision, amplify the power and enhance the daily life. Typical appli-

cation modes of these robots include entertainment, cooperation as in [Lawitzky et al., 2010], teleoperation (e.g.

[Itoh et al., 2000]) etc. In cooperation mode, the sought behavior is typically that of a master-slave relationship

[Kazerooni and Guo, 1993]. In [Wannasuphoprasit et al., 1997]; [Colgate et al., 1996], robotic systems manip-

ulating objects in collaboration with a human operator (HO) are considered. The HO expresses his intention

through a desired motion and the robot has to carry out the task by bringing the necessary efforts and/or adapt

its impedance. Such robots are useful in automotive industry as described in [Akella et al., 1999] or also in the

case of a truck driver who has to replace a defective but heavy tire. This problem could be tackled with a robot

that remains under the authority of the HO who interacts directly with the robot. The robot assists the human

during his motion while relieving him from the important effort without any human perceptible resistive forces

like inertia, friction etc. Humans are skilled at complex tasks and are able to react very flexibly to unknown

situations. Industrial robots are very strong, fast and accurate. It is important to note the difference between

the frequencies with which a HO and the robot can perform their tasks. Studies of [Miyhoshi and Murata, 2000]

have shown that a human can perform a task with a frequency of up to 6Hz, which is much slower than the typ-

ical sampling frequency used in a robotic control scheme. During physical human-robot interaction (HRI), the

skills of both should be combined and the resulting cooperative motion should be truly intuitive and should not

restrict in any way the human motion. This is often referred to as transparency. There are still many challenges

on the road to achieving an efficient physical HRI [Santis et al., 2008]. These challenges are mainly related to

safety (stability) and to developing robot capabilities. One of the most commonly used control methods in

HRI is the impedance/admittance control [Akella et al., 1999, Lamy et al., 2010]. Its purpose is to reduce the

mechanical interaction point (IP) impedance so as to make it equal to that of HO [Buerger, 2005]. In the context

of co-manipulation for handling tasks, usual impedance control based methods have few drawbacks, particularly

noticeable during the starting and the stopping phases. As explained in [Duchaine and Gosselin, 2011], the

use of a fixed virtual damping can lead to an inefficient co-manipulation. In order to provide a better HRI, it

was proposed to continuously adapt the virtual damping coefficient as function of the human “intention”. This

approach was performed using the time derivative of the measured force, for which the measurement noises can

cause problems with the numerical differentiation (dividing by zero, etc.).
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Our approach stands out for the nature of the problem to be tackled, viz. heavy load handling tasks, and

for its vision on the co-manipulation. It is based on the implementation of two main ingredients. The first one

lies in the online generation of an appropriate trajectory of the IP located at the end-effector and describing the

HO intention. The other consists in the design of a control structure allowing a good tracking of the generated

trajectory. The force applied by the HO is the only physically exchanged signal showing the robot how to move

according to his willingness. Indeed, this force gives the information about the desired displacement direction

of the end-effector. But, this direction should necessarily be collinear to the IP velocity. In [Jlassi et al., 2012],

the idea of maintaining to the maximum the collinearity of the end-effector velocity and the interaction force

was proposed to concur in achieving a transparent co-manipulation. The required force to accomplish the co-

manipulation task is supplied by the robot’s actuators, controlled in order to ensure a good trajectory tracking.

Furthermore, for sake of safety, we consider that the displacement velocity should not entirely depend on HO’s

desire but must be conform to a given velocity template. The literature provides a very rich set of approaches

and algorithms of trajectory generation for industrial manipulators [Kröger, 2010]. In this paper, we address

the case of force sensor-based trajectory generation. The interaction force processing should contribute to both

interpreting the triggering times of movements/immobility and in commanding how the robot has to move or

stop, while leaving the final position under the human authority. The trajectory is calculated online, i.e. each

desired position is updated during every control cycle because the input values based on the HO force (intensity

and direction) may change unpredictably.

The remainder of this paper is organized as follows: After an analysis in Section 2, of the co-manipulation

requirements and their consequences on the problem statement, the control strategy based on the criterion of

collinearity between the interaction force and the end-effector velocity is presented in Section 3. The description

of the proposed OTG is developed in Subsection 3.3. The controller design method is explained in Subsection 3.4.

The OTG algorithm is applied and discussed in detail in Subsection 4.3, through the demonstrative example of

the penducobot presented in Section 4. Finally, some conclusions, perspectives and future researches are given

in Section 5.

2 Co-manipulation requirements and trade-off

+

−

human
arm

θd

h

θ(t)Fh(t)

?

Cobot

θd
h

Figure 1: Concept of co-manipulation
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This work focuses on heavy load handling tasks characterized by having motion with moderate velocities.

A potential application field for the strategy proposed in this paper is the manufacturing industry such as

construction industry and assembly where material handling requires considerable efforts. The main purpose

is reducing these efforts, decreasing the consumed time and the costs of these activities. The mechanical links

of the considered robots are all of revolute type. A pendulous load is linked to the last arm (end-effector)

with a passive joint (unactuated), which is also the arm that interacts with the HO. A force sensor measures

the interaction force and gives its corresponding coordinates along each direction in the end-effector frame. Its

localization should be chosen to suit the co-manipulation task. Since the HO will typically interact with the

robot end-effector and not directly with the load, the force sensor could be mounted on the end-effector of the

robot. The idea behind this choice of sensor position is to distinguish between the human applied force and

the disturbance caused by the mass (load) uncertainty. In other words, the resultant force of the load seen as a

disturbance should not be detected by the sensor. However for sake of robustness it should be compensated by

the position control loop. It is assumed that all the robot actuators are torque controlled and that the measures

of position and velocity are all accessible. The human-robot co-manipulation problem is considered here as the

achievement of a master-slave relationship, for which the HO decides when and where the robot moves. In other

words, the HO contributes in the co-manipulation process by making a visual feedback loop of the current robot

configuration with the desired one that he has in mind, as described schematically by Figure 1. This problem

consists in guaranteeing the safety of the HO while manipulating the robot from its end-effector and driving

it to the desired position without having to exert the required force to move the load, or even to perceive the

resistive forces due to the robot dynamics such as its strong inertia, joints friction etc. Hence, this problem

consists in designing the block named Cobot, in a way that it satisfies the requirements below when running.

a) Assistance: The HO drives the end-effector of the robot which accordingly ensures the provision of the

necessary power to move the handled object or to maintain it in a desired equilibrium position.

b) Transparency: During HRI, the resulting cooperative motion should not restrict in any way the operator’s

willingness to move the robot as he would like. Thus, the operator should not perceive any disturbing

effects due to the robot resistive forces.

c) Human safety: For physical HRI, safety is of utmost importance due to the potential risk that may cause

a relatively powerful robot. From the control standpoint, it is possible to increase this level of safety by

guaranteeing that the robot will never exhibit any unacceptable behaviors like instability, too fast motion

etc.

The level of importance of each requirement depends on the expected purpose of co-manipulation. For the

case of heavy load handling task, ensuring the maximum possible of transparency may cause a serious danger

for the operator. Thus, a trade-off between transparency and security appears necessary. Here, this trade-off

is in favor of security. Our interpretation of transparency requirement is translated as control objectives for

which velocity of the IP should remain collinear to the force exerted by the HO and should be proportional

to the magnitude of this force. Notice that exerting a force is the only way for the HO to transmit the

information that contains intrinsically the desired direction of displacement and this direction is given by the

velocity vector at each instant. In consequence, the measured force should serve in generating a trajectory for

the end-effector velocity that this latter has to track. Moreover, the trajectory to track must be generated

online by an appropriate real-time processing of this information. To cope with safety requirement, the kinetic

energy stored by the robot during the motion has to be limited by imposing either a profile or a template to

the desired trajectory for the end-effector velocity. A template basically consists in imposing an upper bound

on the magnitude of this velocity. But in our case, this also requires imposing an upper bound on its successive

derivatives in order to filter the tremors introduced by the exerted force. On the other hand, the choice of
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a profile, which consists in using parameterized functions, is easier to implement in an OTG and allows to

cope with the problem of tremors. This latter approach will thus be adopted in the sequel. The assistance

requirement will be satisfied once the trajectory generation and its tracking will be properly achieved. Then,

generation and tracking represent the main challenges that will be tackled thereafter, a global problem that can

be formulated as a constraint optimal control problem.

3 Control strategy

3.1 Working frame and notations

Without loss of generality, our development will focus on the case of planar robots. Let
−→
X ∈ R

2 be the position

vector of the end-effector.

Let n be the total number of the Degrees Of Freedom (DOFs) and q ∈ R
n the vectors of the generalized joints

displacements, i.e.the active and passive joints noted qa and qp ∈ R respectively. The relationship between the

instantaneous velocity of the end-effector and the velocities of the active joints is given by

−̇→
X = J(qa)q̇a, (1)

where J(qa) is the manipulator Jacobian. The well-known dynamical model of the robot is given by

M(q)q̈ + C(q, q̇)q̇ + g(q) = U + Wf + WHO. (2)

The control vector is U :=
[
τT 0

]T
∈ R

n, where τ ∈ R
n−1 is the vector of applied torques to the active

joints and 0 is the scalar null torque applied to the passive joint. The vector of HRI torques is given by

WHO := J(qa)T−→Fh, where
−→
Fh ∈ R

2 is the interaction force exerted at the end-effector. This force vector is

characterized by its Euclidian norm noted Fh = ‖−→Fh‖ and its orientation, defined by the unitary vector, noted
−−→
Uθh

, where θh is the angle formed by the interaction force
−→
Fh and a unitary vector of the fixed frame. Denote

by
−→
Vθh

the unitary vector, orthogonal and positively oriented to
−−→
Uθh

. The terms M(q) ∈ R
n×n, C(q, q̇)q̇ ∈ R

n,

g(q) ∈ R
n and Wf ∈ R

n are employed to denote the inertia matrix (symmetric and positive definite), the vector

containing the centrifugal and Coriolis forces, the vector of gravitational forces and the vector of friction forces

respectively.

3.2 Collinearity between force and end-effector velocity

As mentioned previously, maintaining to the maximum the collinearity of the end-effector velocity and the

interaction force while having the same direction, should concur in achieving a transparent co-manipulation.

The co-manipulation expected requirements should lead the end-effector velocity and the interaction force to

satisfy a relationship like
−̇→
X = χ

(
q, q̇,

−→
Fh

)
(3)

under the constraints of zero cross-product
−̇→
X × −→

Fh = 0 and of positive scalar product 〈−̇→X,
−→
Fh〉 > 0, where

χ
(
q, q̇,

−→
Fh

)
is a mathematical operator that can be assimilated to an admittance relationship, but which ex-

pression is non-trivial and certainly hard to express analytically, because it has to satisfy all the requirements

in an optimal manner. In particular, χ
(
q, q̇,

−→
Fh

)
should be able to cope with discrete events such as the human

decision of starting or stopping the robot motion, and to maintain a stable robot equilibrium position, robust

to exogenous disturbances. Usually, this operator is described in frequency domain and taken as a linear ad-

mittance. But it is clear that a linear admittance cannot simply cope with start and stop phases. It was shown
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in [Ikeura et al., 1994] that damping parameters of the linear admittance are the predominant coefficients that

allow setting the acceleration/deceleration features in the context of HRI. If the damping is set to a low value,

then, when the HO wants to stop the robot, it will be so compliant that it could collapse, which would represent

a serious danger. Otherwise, the robot will be hard to manipulate and thereby restricts the human motion. The

use of a variable damping adjusted according to the intention of the HO provides a solution but it has a drawback

related to the necessity of computing the force derivative, as explained in [Duchaine and Gosselin, 2011].

In this paper, the seeking of the operator χ
(
q, q̇,

−→
Fh

)
is addressed in a suboptimal way, through the two

steps design of an OTG and a controller, following the method described thereafter.

3.3 Online Trajectory Generator

a) Force intensity processing

Define a force threshold, noted fth, that allows distinguishing the intention to move the robot if the interaction

force amplitude is greater than fth, and the willingness to stop it if the force is lower. Let hr and hf be the

logical quantities that switch to 1 when the force measurement crosses the threshold fth, with a rising and

falling edge respectively. When hr switch to 1, it means that the robot enters into a state of motion, noted

Σmotion, and it remains there. It is therefore an event from which two phases follow each other, a transient

phase corresponding to the motion startup, noted φrise, and a phase of established motion, φcruise. When hf

switch to 1, it means that the robot enters into a state of immobility, noted Σimm., and stops at the desired

position. It is also an event from which two phases follow each other, a transient phase corresponding to the

decelerating motion until the stop, noted φfall, and another one in which the robot configuration is maintained

in a equilibrium position, φstop. To realize a more natural motion, the transient phases and the one of established

motion should be customizable. Let εf be the duration of φfall and εr that of φrise. These settings depend

on the nature of the manipulated object, its environment and the operator’s capabilities. The customization

of the transient part should allow adjusting the reaction time to match the minimum effort that can apply the

operator, according to his abilities. The setting of the established motion phase should be compatible with the

constraint imposed on the IP’s velocity, i.e.with a velocity of constant and moderate amplitude, noted V0. Only

the duration control of φstop and φcruise is left to the HO’s decision. Hence, the interaction force processing

allows the identification of the initiation moment of the rising or the falling phase (denoted t0), making thus

the OTG event-controlled with two discrete states governed by the automaton of Figure 2. This moment is

captured by comparing continuously the magnitude of this force with fth. The sequencing of each phase always

follows the same closed periodical cycle as depicted in Figure 3.

Σmotion Σimm.

‖−→Fh‖ < fth

‖−→Fh‖ ≥ fth

Figure 2: Automaton governing the motion states

φrise

φcruiseφfall

φstop

Figure 3: Periodical cycle of phases
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b) Low-jerk velocity profile

The role of the OTG is to convert the real-time processing of the interaction force into displacement instructions

of the IP, that depend on the phase in which is the HRI. These instructions should rely on a specific velocity

profile, noted Vp(t), that meets the expected requirements on the norm of the desired velocity at the IP (noted
−̇→
Xd), viz safety, transparency and fluidity of movement interaction. A clear understanding of the human arm

motions, as studied extensively by authors in [Tee et al., 2010], should contribute to a better consideration of

the co-manipulation requirements in the definition of the trajectories to track. However, for simplicity and

conciseness reasons of this paper, we made the choice of not including the human arm’s dynamic to model

the HRI in terms of force and common trajectories, whereas it should be included for a more rigorous and

complete study. In return, a simpler representation of the HRI is considered. Since natural trajectories are

required for a safe, smooth and comfortable interaction between the HO, the robot and the hanged load, we

adopted the minimal-jerk trajectories to represent the HRI. Indeed, smoothness can be quantified as a function

of jerk as reported in [Flash and Hogans, 1985]. It is now well established and experimentally demonstrated that

limiting jerk is important for reducing the robot attrition as well as for improving fast and accurate tracking

[Piazzi and Visioli, 2000], [Craig, 1989], [Constantinescu and Croft, 2000]. Moreover, it leads to a smoother

control of the actuators, which reduces the excitation of the manipulator’s fast dynamics such as vibrating

modes. This consequently reduces danger for the HO, wear of the actuators, etc. To gather these specifications,

the proposed low-jerk time function Vp(t) imposed to ‖−̇→Xd‖ and satisfying each phase’s requirement is given by

a piecewise defined polynomial based on the following quitinc polynomial

Vp(t) = Vi + (Vf − Vi)

(
10

(
t − t0

T

)3

− 15

(
t − t0

T

)4

+ 6

(
t − t0

T

)5
)

(4)

where T , Vi and Vf are parameters governed by the current HRI phase, as described in Table 1.

Phase Parameters setting Velocity profile expression

φstop T 6= 0, Vi = 0, Vf = 0 Vp(t) = 0

φrise T = εr, Vi = 0, Vf = V0 Vp(t) = V0

(
10

(
t − t0

εr

)3

− 15

(
t − t0

εr

)4

+ 6

(
t − t0

εr

)5
)

φcruise T 6= 0, Vi = 0, Vf = V0 Vp(t) = V0

φfall T = εf , Vi = V0, Vf = 0 Vp(t) = V0

(
1 − 10

(
t − t0

εf

)3

+ 15

(
t − t0

εf

)4

− 6

(
t − t0

εf

)5
)

Table 1: Phase dependent velocity profile expression

c) Force direction processing

The desired velocity
−̇→
Xd of the IP should remain collinear at every moment to the force exerted by the HO while

having the same direction. Thus the angle formed by the IP’s desired velocity and the interaction force

y(−→
Xd,

−→
Fh

)

should be zero during the co-manipulation task, which is equivalent to ensuring
−̇→
X ×−→

Fh = 0 with 〈−̇→X,
−→
Fh〉 > 0.

In other words,
−̇→
Xd should have the same orientation angle than

−→
Fh, namely θh. So, the direction to track,
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given by the unitary vector
−−→
Uθh

, has to be extracted from the measured force
−→
Fh. The force sensor delivers the

coordinates of
−→
Fh in the end-effector frame. A simple use of rotational transformations gives the corresponding

coordinates in task space frame,
−→
Fh =

[
Fx Fy

]T
. Then, the orientation angle is given by θh = tan−1 (Fy/Fx).

In consequence, once the desired norm of
−̇→
Xd computed as indicated in Paragraph b), the coordinates of

−̇→
Xd

in task-space frame are easily derived by the relation:
−̇→
Xd = Vp

−−→
Uθh

. The desired position
−→
Xd is obtained by a

coordinate numerical integration of
−̇→
Xd, using for example an Euler explicit method, whereas the corresponding

acceleration
−̈→
Xd is deduced through basic numerical differentiation. All those vectors are used in an Inverse

Kinematic Model component (IKM) [Spong et al., 2006] in order to compute the relevant variables needed in

our control structure, such as joint positions, velocities and accelerations.

d) Recursive algorithm

Because the human may change his desired motion unpredictably (a sudden presence of an obstacle, an unex-

pected change of destination etc), the real-time processing of the interaction force requires to store the starting

and stopping moments of the robot’s motion in memory cells, together with the values of the corresponding

state i.e.position, velocity etc. Since the desired motion signals (
−→
Xd,

−̇→
Xd and

−̈→
Xd) are generated in real-time, the

information needed at the next computation cycle must be stored at each instant to allow. The algorithm for

generation of these guidelines is necessarily recursive and can be represented by the block-scheme in Figure 4.

Threshold

hit-crossing

detection

Force features

Interaction

fth

fth

z−1

Digital clock

z−1

z−1

z−1

R
e
c
u
rs

iv
e

c
o
d
e

hf

hr

t0(t)

−→
Xd(t − 1),

−̇→
Xd(t − 1),

−̈→
Xd(t − 1) Vp(t)

Vp(t − 1)

t0(t − 1)

Fh(t − 1)

Fh(t)

θh(t)

V0, εr, εf , fth

Traj. parameters

(discrete time) t

−→
Xd(t)

−̇→
Xd(t)

−̈→
Xd(t)

Figure 4: Block-scheme of the recursive algorithm for generating the desired trajectory
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3.4 Controller design procedure
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]
‖−→Fh‖ ‖
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Xd‖

∫
xd

ydθh θh
∠

‖ ‖

sensors

measurements

Generator

Trajectory

Online Inverse

feedforward

dynamic Robot

Figure 5: Control structure of planar robot with one passive DOF

a) Inverse dynamic based control

The OTG component described in Subsection 3.1 provides the trajectory for the active DOFs, noted qa
d . Since

the actuators are torque-controlled, it is then necessary to generate the desired torque, noted Ud, consistent

with qa
d . Moreover, the considered robot has one unactuated joint. Thus, the control strategy should also cope

with the stabilization problem of the passive joint. For this purpose, the generation of an appropriate trajectory

for this DOF, noted qp
d, is also considered in order to take into account the trajectory tracking error of this

DOF in the control. In the proposed work, both Ud and qp
d are obtained by the numerical inversion of the robot

dynamical model in (2), so as to be consistent with it when qa ≡ qa
d . This is implemented in the component

named “Inverse Dynamic Feedforward” of the control structure depicted in Figure 5.

b) Controller design

To cope with the uncertainties (due to unknown initial conditions, parameters uncertainties etc) that may

deteriorate the results of the model inversion, the robotic system is inserted in a feedback loop containing a

controller designed to make the tracking error vanish. Let q̃ := q − qd and ˙̃q := q̇ − q̇d be the position and

velocity error respectively, where qd =
[
qa
d

T qp
d

T
]T

. The controller should be designed in order to ensure an

asymptotic convergence of the DOFs toward the desired generated trajectories, i.e. limt→∞ q̃(t) = 0. The model

inversion based control law Ud is summed to a torque correction term u, corresponding to the output of the

sought controller that should ensure the tracking requirement:

U := u + Ud. (5)

Despite the fact that any kind of controller could be considered in this work, for sakes of simplicity, the pro-

posed approach is limited to the synthesis of a linear controller based on the results of the following theorem

[Coron, 2007].
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Theorem 1 Consider the nonlinear system

ẋ = f(x) + g(x)U (6)

where f and g are smooth vector fields, x ∈ R
2n is the state of the system and U ∈ R

n is the control vector.

• If the linearized system around the equilibrium point P0 := (x0, U0) ∈ R
2n ×R

n is controllable, then it is

stabilizable and the non-linear system (6) is locally controllable around x0 and locally stabilizable with the

same feedback control law in a neighborhood of P0.

• Let (xd(t), Ud(t)) be the pair of the desired trajectory xd ∈ R
2n and the corresponding control Ud ∈ R

n,

satisfying (6) for all t ≥ 0. Suppose that f(0) = 0. Let A :=
∂f

∂x

∣∣∣∣
x=0

and B := g(0). Assume that the

pair (A, B) is completely controllable. Let K ∈ R
n×2n be a state feedback gain matrix such that A + BK

is Hurwitz.

U = K (x − xd) + Ud (7)

Then, the control law (7) insures locally an exponential convergence of (x(t), U(t)) toward (xd(t), Ud(t)).

Remark 3.1 Application of these results to other equilibrium point is easily accomplished through coordinate

transformations as explained in [Jlassi et al., 2012].

Remark 3.2 The decay rate of the tracking error can be adjusted by a suitable choice of K, which can be

determined by pole placement techniques, optimal control etc.

4 Application and simulation results

4.1 Penducobot example: main motivations for this choice

A simple but demonstrative example of a Penducobot is discussed in this Section. A significant amount of

research has amply treated this application but always within the context of robotic manipulation, as shown for

example in [Fantoni et al., 2000] for the Pendubot manipulator or in [Matthew et al., 1999]) for the Acrobot ex-

ample, where the objective of both works was to stabilize the mechanical system around an unstable equilibrium

point. The control objectives of co-manipulation are different, as recalled in Section 2.

4.2 Presentation of the Penducobot

The current work focuses on illustrating the control strategy adopted through a single arm robot evolving in only

one frame, depicted on Figure 6. Its architecture contains two revolute joints. The first one is active, located at

point O where a motor exerts a control torque Cm, and where θ is its measured position w.r.t. the fixed frame.

The second is passive, located at point A and ϕ measures its position w.r.t. the main arm. It is used to hang a

pendulous load located at point M and of mass µ through a massless bar, so that the proposed application is more

akin to a practical case, like for example the one of a handling crane. The interaction point is located at point

P, where the HO drives the robot and applies to it a force
−→
Fh as described in Subsection 3.1. The corresponding

resulting torque, applied to the arm and exerted at the point O, is given by Ch := J(θ)T
−→
Fh = L‖−→Fh‖ where J(θ)

is the manipulator Jacobian. The joints at points O and A are assumed to be with viscous friction of friction

factor fO and fA respectively, and where the friction torques are denoted CfO
and CfA

respectively.
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Figure 6: A rough sketch of the Penducobot.

Let Jθ := mL2

3 + µl2, Jαθ := µlh, γθ :=
(
mL

2 + µl
)
, γα := µh, ξ := cos (θ − α) and η := sin (θ − α) where

α := θ + ϕ + 3π
2 . The details of the motion equations (2) are given, in this case, by

M(q) :=

[
Jθ Jαθξ

Jαθξ Jα

]
, C(q, q̇) :=

[
0 Jαθα̇η

−Jαθ θ̇η 0

]
, Wf :=

[
CfA

+ CfO

−CfA

]
, g(q) :=

[
γθgcos (θ)

γαgcos (α)

]
,

with qa := θ, qp := ϕ, q :=

[
θ

α

]
, U :=

[
τ

0

]
and τ := Cm + Ch ∈ R.

4.3 OTG adaptation

The OTG in Subsection 3.3 is adapted to the penducobot problem so that different force thresholds can be

assigned to the rotation direction of the main arm, noted fth− for the clockwise direction and fth+ for the

counterclockwise one. Notice that the end-effector velocity norm is given here by ‖−̇→X‖ = L|θ̇|. Thus, generating

a profile for ‖−̇→X‖ or |θ̇| is the same. Let ω0 be the cruise velocity of the IP desired velocity profile and

ω̃0 = sign
{
〈−→Fh,

−→
Vθ〉
}
|ω0| having the same sign as the scalar product 〈−→Fh,

−→
Vθ〉 in order to take into account the

rotation direction. Then, the velocity profile parameter V0 of Paragraph b) corresponds here to ω̃0.

In order to illustrate the OTG behavior in a simple way, a sine function is assigned to Fh(= ‖−→Fh‖). Figure 7

depicts the normalized human force F̂h(t) := Fh(t)
‖Fh(t)‖∞

by the red curve, the trajectory progression of the end-

effector velocity during the HRI, the normalized velocity profile (in blue)
dθ̂d(t)

dt
= θ̇d(t)

‖θ̇d(t)‖∞
and the normalized

thresholds fth+ in dashed and fth− in dot-dashed brown lines. One can observe the different phases following

each other, identified by the terms RAMP, STOP and CRUISE:

• RAMP is used to designate both the rising and the falling phases,

• STOP is for the stopping phase,

• CRUISE is for the cruising phase.

Remark 4.1 The noises affecting the force measurement could lead the OTG to continuously switch between

the different phases. This scenario could be avoided by the use of thresholds with hysteresis effect, in order to

prevent small changes (corresponding to unwanted triggering events) from having any effect.
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Figure 7: Desired trajectory for DOF θ̇d generated by the processing of force Fh.

4.4 Linearization around an equilibrium point

Let x =
[
x1 x2 x3 x4

]T
:=
[
θ α θ̇ α̇

]T
∈ R

4. By rewriting the motion equations in (2) with matrices

of Subsection 4.2 into the corresponding state-space form as in (6), the set of computed equilibrium points is

given by the couple (x0, U0) where x0 =
[
x1

0 x2
0 0 0

]T
, such that ∀x1

0 ∈ [0, 2π[, x2
0 = π

2 + kπ ∀k ∈ Z,

U0 = γθgcos
(
x1

0

)
. Given an arbitrary x1

0, U0 is then uniquely determined and there are two possible equilibrium

positions for x2
0. The computation of the Hessian of the potential energy function Ep(x

2
0) allows to check that([

x1
0 x2

0 0 0
]
, U0

)
where 3π

2 + 2kπ ∀ k ∈ Z, is a stable equilibrium point, corresponding to a “potential

well ”. The linearization of the Penducobot model around the stable equilibrium point leads to a linear time

invariant state-space model

ż(t) = Az(t) + Bv(t), where

A =




0 0 1 0

0 0 0 1

A31 A32 A33 A34,

A41 A42 A43 A44




, B = ∆(x0)




0

0

Jα

Jαθsin
(
x1

0

)




,
(8)

with ∆(x0) =
(
JαJθ − J2

αθsin
(
x2

0 − x1
0

)2)−1

,

A31 = ∆(x0)
(
Jαγθgsin

(
x1

0

)
−4∆(x0)Jαγθgcos2

(
x1

0

)
J2

αθsin
(
x1

0

))
,

A32 = ∆(x0)
(
−gJαθγαsin

(
x1

0

)
+4∆(x0)Jαγθgcos2

(
x1

0

)
J2

αθsin
(
x1

0

))
,

A33 = ∆(x0)
(
−(fA + fO)Jα + fAJαθsin

(
x1

0

))
,

A34 = ∆(x0)
(
fAJα − fAJαθsin

(
x1

0

))
,

A41 = ∆(x0)
(
Jαθγθg

(
sin2

(
x1

0

)
− 2cos2

(
x1

0

))
−4∆(x0)Jαθγθgcos2

(
x1

0

)
sin2

(
x1

0

))
,

A42 = ∆(x0)
(
2Jαθγθgcos2

(
x1

0

)
− gγαJθ +4∆(x0)Jαθγθgcos2

(
x1

0

)
sin2

(
x1

0

))
,

A43 = ∆(x0)
(
fAJθ − Jαθsin

(
x1

0

)
(fA + fO)

)
,

A44 = ∆(x0)
(
−fAJθ + fAJαθsin

(
x1

0

))
.
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Let C(A, B) =
[
B AB A

2
B A

3
B

]
the controllability matrix. An analytical calculation gives the expres-

sion of its determinant:

∆4(x0)gγα

(
−γαgJ2

αθsin
2
(
x1

0

)
+ f2

AJαθsin
(
x1

0

)
− f2

AJα

)
.

Because of the presence of viscous friction within the joints,

det {C(A, B)} = 0 ⇒ gM2h2l2sin
(
x1

0

)2
= f2

A

(
lsin

(
x1

0

)
− h
)
.

It is easy to check that if fA < 2Mh
√

hg, the system’s controllability is verified regardless x1
0. Otherwise,

i.e.in the case of extremely high friction which is improbable for a realistic application, then the controllability

property could be lost.

Remark 4.2 With no friction, one can check that the determinant is zero when x1
0 = ±kπ, ∀k ∈ N. Thus, the

system is controllable everywhere except when in horizontal position.

4.5 Simulation results

The following simulations were done using MATLAB/Simulink. The Penducobot parameters are m = 10 [kg],

µ = 2 [kg], l = 4 [m], L = 5 [m] and h = 0.5 [m]. The rise and fall times are set to εr = 0.6 [s] and εf = 0.3 [s].

The positive threshold is set to 4.475 [N ] and the negative one to −4.45 [N ]. It corresponds to a torque threshold

of roughly 22 [Nm]. A viscous friction coefficient of fO = fA = 0.8[Nm/(rad/s)] is used for the friction model

Wfm
. The initial positions of the robot arm and the rigid bar are θ(0) = θd(0) = −45◦ and φ(0) = 45◦

respectively.

The linearized system is stable in open loop and has two oscillating modes. The state feedback gain K ∈ R
1×4

of the control law (7) is computed so as to solve the Linear Quadratic control problem with the criterion

J :=

∫ +∞

0

(Πz(t))T Q(Πz(t)) + v(t)T Rv(t)dt

where Π is the matrix of coordinates change between variables {θ, α} and {θ, ϕ}. The 4 × 4 weighting matrix

Q ≥ 0, chosen bloc-diagonal to weight independently θ and ϕ, is customized to manage an acceptable trade-off

between the tracking performances of DOFs θ, ϕ and their time derivatives. The scalar weighting R > 0 allows

to adjust the control effort in closed-loop. The proposed simulations were carried out for two cases of weighting

parameters. The first was obtained by setting R1 = 10−9 and Q1 = diag
(
1, 10−11, 10−8, 10−1

)
in order to

balance the tracking performances between DOF θ and DOF ϕ. The corresponding value of the state feedback

gain is K1 =
[
−3453.8 27116 −34849 −2979.6

]
and the associated simulations are shown in Figure 8. The

second was obtained by setting R2 = 10−9 and Q2 = diag
(
104, 10−6, 10−3, 10−3

)
in order to emphasize the

tracking performances of DOF θ with respect to DOF ϕ. The corresponding value of the state feedback gain is

K2 =
[
3162100 25578 45.616 15.412

]
and the associated simulations are shown in Figure 9. In each case

of weighting parameters, one can note that tracking performances for the nonlinear system are quite similar

to the linear system ones. Figure 8 shows that the tracking performance objective for the DOF θ has been

worsened for the benefit of the one of DOF ϕ, as expected by the choice of weighting parameters set in Q1. On

the other hand, Figure 9 reveals a degradation of the tracking performances for the DOF ϕ when the weighting

parameters emphasize the DOF θ rather than ϕ, as set in Q2. For this last, the state feedback gain contains

higher values and causes more important oscillations in the trajectory tracking for DOF ϕ.

In conclusion, linearization technic appears to be quite suitable for dealing with the co-manipulation control

problem formulated in this paper and applied to the Penducobot case.
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Figure 8: Trajectory tracking for the linearized system (left) and the nonlinear one (right) - Case of weighting
parameters (Q1, R1).
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Figure 9: Trajectory tracking for the linearized system (left) and the nonlinear one (right) - Case of weighting
parameters (Q2, R2).

5 Conclusions

This paper addressed the co-manipulation problem for handling tasks through a specific OTG coupled with a

motion feedback loop. The main issue consisted in designing a control strategy that allows a human to drive the

robot end-effector anywhere he would like, at any time he would decide, according to the desired master-slave

relationship depicted in Figure 1. The proposed approach mainly lies on an event-controlled OTG that delivers

trajectories to track when the operator exerts a force which amplitude is greater than a given threshold of low

intensity. The other part of this approach is based on the design of a kinematic feedback loop insuring good

trajectory tracking and maintaining the immobility of the robot configuration when there is no interaction force.

The resulting control strategy allowed illustrating the main idea that has been proposed, based on maintaining

to the maximum collinearity between the end-effector velocity and the interaction force. By the choice of the

penducobot application, we sought to apply our approach to a simple case, but similar to handling cranes

encountered in industry.
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