O(n^3logn) Time Complexity for the Optimal Consensus Set Computation for 4-Connected Digital Circles - Archive ouverte HAL
Communication Dans Un Congrès Année : 2013

O(n^3logn) Time Complexity for the Optimal Consensus Set Computation for 4-Connected Digital Circles

Résumé

This paper presents a method for fitting 4-connected digital circles to a given set of points in 2D images in the presence of noise by maximizing the number of inliers, namely the optimal consensus set, while fixing the thickness. Our approach has a O(n 3 log n) time complexity and O(n) space complexity, n being the number of points, which is lower than previous known methods while still guaranteeing optimal solution(s).
Fichier principal
Vignette du fichier
DGCI_paper143_FV.pdf (1.39 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00857688 , version 1 (03-09-2013)
hal-00857688 , version 2 (08-12-2016)

Identifiants

Citer

Gaëlle Largeteau-Skapin, Rita Zrour, Eric Andres. O(n^3logn) Time Complexity for the Optimal Consensus Set Computation for 4-Connected Digital Circles. Discrete Geometry for Computer Imagery, Mar 2013, Sevilla, Spain. pp.241-252, ⟨10.1007/978-3-642-37067-0_21⟩. ⟨hal-00857688v2⟩
197 Consultations
288 Téléchargements

Altmetric

Partager

More