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Abstract. This paper presents a method for fitting 4-connected digital
circles to a given set of points in 2D images in the presence of noise
by maximizing the number of inliers, namely the optimal consensus set,
while fixing the thickness. Our approach has a O(n3log n) time com-
plexity and O(n) space complexity, n being the number of points, which
is lower than previous known methods while still guaranteeing optimal
solution(s).
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1 Introduction

Fig. 1. (a) 0-Flake circle and Boundary circles, (b) 0-Flake annulus and (c) correspond-
ing 4-connected digital circle.

In the present paper, we are considering the fitting problem of a set of points
in a noisy 2D image by a 4-connected digital circle. Such a 4-connected digi-
tal circle (see Fig. 1(c)) can be obtained by a morphological based digitization
scheme. The 0-Flake in Fig. 1(a) is the structuring element. Such circles can be
characterized analytically [5, 9]. The 0-Flake digital circle is defined as all the
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digital points (see Fig. 1(c)) inside a sort of Annuli (see Fig. 1(b)), called 0-Flake
Annuli, composed of four circles (see Fig. 1(a)). These circles are called boundary
circles. It is important to note that the thickness of the digital 0-Flake circles is
fixed. Most annuli fitting methods consider only classical annuli defined by two
concentric circles and try to find annuli with minimal or maximal thicknesses
given some other parameters. This is not adequate for digital circle fitting.

The set of points (inliers) which fits a model is called a consensus set. The
idea of using such consensus sets was proposed for the RANdom Sample Consen-
sus (RANSAC) method [6], which is widely used in the field of computer vision.
However RANSAC is inherently probabilistic in its approach and does not guar-
antee optimality. This paper aims at proposing a new lower time complexity
for the computation of the optimal consensus set. This means that our goal is
to maximize the number of inliers. In our case, an inlier is simply defined as a
point inside the 0-Flake annulus. Non Probablistic methods that detect annuli
have been proposed (for example [11]). Most of these algorithms minimize or
maximize the thickness of the annuli [8] which is not adequate when considering
digital circles where the thickness is fixed. Only few algorithms deal with out-
liers [12, 7, 13] but the number of outliers is usually predefined [7, 13] and the
problem consists again in minimizing the thickness. The method proposed by
O’Rourke et al. [14, 15] that transforms a circle separation problem into a plane
separability problem, is also not well suited because the fixed thickness of the
digital circles translates into non fixed vertical thicknesses for the planes. In this
case, the problem is complicated (See [4] for some solutions on how to handle
this difficulty).

So our problem is finding the optimal consensus set (maximal number of in-
liers) of digital points inside a 0-Flake annulus which has a fixed thickness where
the center and the radius are unknowns. In [1] and [2], brute force algorithms
were proposed to compute the optimal consensus set respectively for Andres dig-
ital circle (defined as digital points inside a classical annulus of fixed thickness)
and 0-Flake digital circles. It was shown that if an optimal solution exists then
there exists a finite number of equivalent optimal solutions (with the same set
of inliers) with three points on the boundary (internal and/or external) of the
annulus. Testing all the configurations of three points and counting the inliers
leads therefore to all the possible optimal solution sets with a time complexity
of O(n4) where n is the number of points.

A new method is proposed in this paper for fitting 0-Flake digital circles.
This method requires just two points to be located on the boundary circles.
This method is inspired by the dual space proposed by [11]: the centers of all the
circles with two specific points on the boundary correspond to a straight line.
A dual space where the x axis represents the center locations and the y axis
represents the distance to this center allows to find the largest empty annulus
using an interval sorting.

We adapt this idea to our problem but there are several major differences:
in our case, the thickness is fixed and we look for a maximal number of inliers.
Moreover, since we deal with Flake annuli, there are more than only one straight
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line for the center locations (see section 2.2). The idea is the following: given a set
S and given two specific points on the boundary of a Flake annuli, we consider
the center locations straight lines as parametric axis. We then determine when
a point enters and leaves the flake annuli while the center moves along the axis.
This allows us to compute the intervals where the number of inliers is maximized
(Section 3). By considering all the combinations of two points, we are able to
compute the exhaustive set of all optimal consensus sets in O(n3 log n).

The paper is organized as follows: in Section 2 we expose some properties and
characterizations of the 0-Flake digital circles and its analytical annulus defini-
tion. Section 3 provides the general idea and the detailed algorithm for finding
the optimal consensus sets. Section 4 presents some results. Finally Section 5
proposes a conclusion and some perspectives.

2 The 0-Flake annulus : definitions and properties

In [1] and [2], we proposed a brute force algorithm with O(n4) time complexity
for fitting Andres circle and 0-Flake circle of fixed thickness, with n the number
of points to fit. We have shown that if an optimal solution (set of inliers) exists
then there exists an equivalent optimal solution (with the same set of inliers)
with three points on the boundary (internal and/or external). In this section
we are considering the problem of characterizing the 0-Flake annulus that are
equivalent (same inliers, same thickness) to some optimal solution with only two
points on the boundary circles of the Flake annuli. Let us first introduce some
basic notations as well as the analytical definition of the 0-Flake digital circles.
In a second part of this section, we will look at the annulus characterization for
0-Flake circles with thickness 1.

2.1 Notations and basic definitions

In this section, we present 0-Flake digital circles with the associated notations
and definitions. See [10, 5, 3, 9] for more details on the digitization models and
properties of the different types of digital circles. The digitization scheme we
are considering is an Adjacency Flake Digitization [5, 3, 9]. It is based on a mor-
phological digitization scheme with a structuring element called an Adjacency
Flake. In this paper we are limiting our self to 0-adjacency Flake (or simply
0-Flake) circles for the sake of simplicity. The 2D 0-Flake corresponds to the
diagonals of a unit cube. The figure 1.a shows the 0-Flake and a corresponding
Flake annulus.This corresponds to 4-connected digital circles when the size of
the Flake and thus the thickness of the Flake annulus is equal to one. However,
the proposed fitting method works as well for 2D 1-adjacency Flake circles (8-
connected circles) and for other thicknesses [3, 9]. The 0-Flake digitization DF0

of the Euclidean circle C(C,R) of center C and radius R is defined as follows:

DF0
(C(C,R)) = (X ⊗ C(C,R))

⋂
Z2
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Where X is the 0-Flake corresponding to the diagonals of a unit square. Proof
that such a digital circle is 4-connected can be found in [5, 9].

The 0-Flake annulus AF0 of the Euclidean circle C(C,R) of center C and
radius R is analytically defined as follows [9]:

AF0
(C(C,R)) = (X ⊗ C(C,R)) ={

x ∈ R2 : −|x− Cx| − |y − Cy| − 1
2 ≤

(x− Cx)2 + (y − Cy)2 −R2 ≤ |x− Cx|+ |y − Cy|+ 1
2

}
The smallest possible 0-Flake circle is of radius

√
2/2. With a Flake struc-

turing element, the analytical characterization of circles of smaller radii are not
correct. This is one of the limitations of the Flake model. It is however not a big
constraint as it corresponds to a circle that spans only a couple of pixels [9].

We call boundary circles the 4 circles that form the boundary of the 0-
Flake annulus, i.e. the circles centered on (Cx ± 1

2 , Cy ± 1
2 ). On figure 1.a, we

can see the four boundary circles C00, C01, C10 and C11:

Definition 1. Let Cij be a boundary circle of the 0-Flake circle C(Cx, Cy) of
radius R. Cij is defined as the circle of center (Cx, Cy) + (1/2, 1/2)− (i, j) and
radius R.

The actual boundaries of the 0-Flake annulus are only parts of those bound-
ary circles (see fig. 1). We call internal (resp. external) boundary of the 0-Flake
annulus, the parts of the boundary circles that are closest (resp. farthest) to the
center of the 0-Flake annulus. We define the 0-Flake digital circle as the set of
digital points in the 0-Flake annulus.

Definition 2. Let us consider a set of points S. Two Flake annuli are said to
be equivalent with regard to S if the points of S belong to both annuli.

2.2 0-Flake annulus characterization

In [2], it has been proven that given a 0-Flake annulus covering a set of points
there exists an equivalent 0-Flake annulus (same inliers, same thickness) which
has at least three points of the set on its boundary circles, not necessarily on
the actual internal or external boundary of the annulus. For the fitting method
we are going to present here, we need to show that if a Flake annulus covers a
set of points then there exists an equivalent Flake annulus with two points on
the boundary circles. Again, we do not require the points to be on the actual
internal or external boundary as simply being on the boundary circles is sufficient
to provide a straight line of possible center locations. The proof in [2] is obviously
sufficient for our purpose.

Now we have two points of the set on the boundary circles, we are going
to check all the possible 0-Flake annuli that have those two points on their
boundary circles. The following proposition provides the characterization of the
center locations for those annuli.
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Proposition 1. Let us suppose that we have a set of points S and two points p
and q ∈ S.

– The centers of all the Flake annuli having p and q on their boundary circles
belong to a maximum of 16 straight lines. We call these straight lines, center
axes.

– The set of all the centers of the annuli covering the consensus set S with p
and q on the boundary circles is a set of straight line segments, half lines or
straight lines belonging to the center axes.

Proof. Let us suppose that we have a consensus set S in a 0-Flake annulus F of
center C (C(Cx, Cy), R, ) with two points p and q of S on its boundary circles.
First, let us note that if we consider Flake annuli with two points p and q on some
of its boundary circles, we have several possibilities since p and q may belong
to the boundary circles C00, C01, C10 or C11. There are 16 possible different
configurations.

– If p and q belong to the same boundary circle Cij of center (Cijx, Cijy) =
(Cx, Cy) + (i, j) − (1/2, 1/2) then the center of Cij has to belong to the
perpendicular bisector of p and q. Therefore the 0-Flake annulus F centers
belong to its parallel passing through the points (Cijx, Cijy) + (1/2, 1/2) −
(i, j).

– If p belongs to the boundary circle Cij and q to the boundary circle Ckl then
obviously the point q′ = q + (i − k, j − l) belongs to Cij and the previous
reasoning works with p and q′ at the condition that p is different from q′. In
this case there is no center axis but all the points in space can be centers. We
can actually discard such configurations because in such a case it is easy to
see that there exist an equivalent configuration with two points of S on the
boundary circles that do not have this problem. One has simply to discard
one of the two points, for instance by keeping p, and use the principle of [2] to
find another point on a boundary circle. Since only four points around p may
cause such a problem, we have either other points or a set of four neighboring
points that can easily be dealt with otherwise. The corresponding optimal
solutions will therefore be treated by some other configurations of points.

This proves that there is a maximum of 16 center axes. The actual center axis
equation for p ∈ Cij and q ∈ Ckl is given by:

2(px − qx + i− k)Cx + 2(py − qy + j − l)Cy + (px − 1/2 + i)2

+(py − 1/2 + j)2 − (qx − 1/2 + k)2 − (qy − 1/2 + l)2 = 0

Let us now consider a point t of S and a center axis defined by p and q
belonging to Cij and Ckl respectively, with i, j, k, l ∈ {0, 1}. The point t is an
inlier if it is inside of at least one of the four boundary circles and not inside all
four boundary circles (see Figure 1.a). Let us determine when, with the center
of the flake annulus moving along the center axis, t enters or leaves a boundary
circle Cmn and thus when it may be inside 0,1,2,3 or 4 boundary circles. Different
cases have to be examined:

rita
Rectangle
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– Let us suppose that t − (m,n) 6= p − (i, j) and t − (m,n) 6= q − (k, l).
Let us consider the following three points p, q′ = q + (i − k, j − l) and
t′ = t + (i −m, j − n). There is of course only one circumcenter c for p, q′

and t′. There is therefore a unique center point c′ = c + (1/2, 1/2) − (i, j)
on the center axis such that p ∈ Cij , q ∈ Ckl and t ∈ Cmn. On one side of
c′ on the center axis, t will be inside the boundary circle Cmn while for all
the centers on the other side of c′ on the center axis, t will be outside the
boundary circle Cmn.

– If t− (m,n) = p− (i, j) or t− (m,n) = q − (k, l) then t belongs to Cmn for
all the Flake annuli with center on the center axis.

Now, for each center axis defined by p and q, with some parametrization of the
center axis, for each point t we have four intervals of type ]−∞, x], [x,+∞[
or ]−∞,+∞[. The intersection of four such intervals is a straight line segment
on the center axis, an half-line on the center axis, the complete center axis or is
empty. By considering all the center axes we obtain the result of the proposition.

ut

3 Fitting Algorithm

Using the above proposed flake annuli characterization, our fitting problem can
be described as follows: given a finite set S =

{
(Px, Py) ∈ Z2

}
of n points such

that n ≥ 2, and given a fixed thickness 1 we would like to find a 0-Flake annulus
such that it contains the maximum number of points of S. Points belonging to
the annulus are called inliers; otherwise they are called outliers.

The idea behind our fitting method is inspired by [11] where the authors try
to maximize the width of an empty annulus. In [11], given two points p and
q, they define a dual space where the perpendicular bisector of the two points
becomes the abscissa axis. These are all the centers of the circles that have p
and q on its boundary. For any point t, the ordinate value is given by its dis-
tance to a point of the bisector and thus to the center of a circle that has p and
q on its boundary. It allows them to determine when a point t enters a circle
centered on the bisector. By sorting these entry points relatively to the abscissa
axis, they determine the biggest empty annulus. Since they look for the biggest
empty annulus, they do not represent an annulus in their parameter space but
only circles. It is the biggest empty interval projected on the abscissa axis that
will define the looked for annulus.

Our purpose is quite different but their idea of taking the axes where the
possible centers of the annuli are located can be adapted in the following way.
One of the main difference with our problem is that we deal with Flake annuli
and therefore we have four boundary circles that are not concentric: for two given
points p and q, the 0-Flake annuli centers may follow 16 different straight lines,
called center axis. Each of these center axis will be considered separately. We
do not consider an actual dual space. There is no ordinate axis since the distance
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from p and q to the center axes and thus to the center of the Flake annuli are not
equal. We simply consider a parametrization of each center axis and determine
the parameter λtij for which a given point t enters the boundary circle Cij of
a flake annulus centered on the considered center axis. This corresponds to a
set of a maximum 4 parameter values that are sorted. We complete this list by
adding −∞ and +∞. Each parameter interval (between two consecutive values
of the list) is tested to check if the point t is inside or outside the corresponding
0-Flake annulus. One needs only to test the midpoint of each interval and in
the case of semi open intervals such as ]−∞, λ] (respectively [λ,+∞[), we test a
value that is significantly smaller (respectively bigger) than λ in order to avoid
numerical problems. This leads to a set of one or two intervals where t is inside
a 0-Flake. In order to avoid interval sorting (which might have a O(n2) worst
case complexity), these intervals are then simply coded as a general parameter
list as follows: let us suppose that the point t belongs to a 0-Flake annulus for
the interval [a, b], then we add the elements (a,+1) and (b,−1) to a general
parameter list. This codes for the fact that at parameter value a the number of
inliers is increased by 1 and at parameter value b it is decreased by 1.

This is repeated for each point t (different from p and q) of the set S. The
general parameter list is then sorted by parameter value and, starting at param-
eter value −∞, the number of inliers are counted by summing up the +1 and
−1. This results in a list of intervals for which a maximum of inliers is obtained.
These intervals and their corresponding generator values p, q, i, j, k and l are
added to the already existing maximal inlier interval list. If the maximum of in-
liers increases, then the former maximal inlier interval list is wiped and replaced
by a new one.

A pair of points defines a maximum of 16 center axes. For each other point, we
determine the parameter values on each center axis for which it is inside a flake
annulus. There is a maximum of 4 such parameter values per point. All these are
sorted for each center axis with a time complexity of therefore n log n. scanning
each list to determine the interval where we have a maximum consensus set is
linear in the number of parameter values and thus in n. Since this is repeated
for every couple of points in the set, the final complexity is O(n3 log n).

Example: Here is an example of values obtained while fitting the points
(0, 0), (5, 3) and (2, 1). At some point we have a (already sorted) set of param-
eter values −23.4953,−4.0588,−3.08697, 8.57493 for a center axis correspond-
ing to (0, 0) and (5, 3). The corresponding general parameter list looks like
((−∞, 1), (−3.08697,−1), (8.57493, 1), (+∞,−1)). This means that the point t
(in this case (2, 1)) belongs to a 0-Flake annulus for the parameter intervals
]−∞,−3.08697] and [8.57493,+∞[. The parameter values −23.4953 and −4.0588
disappear as they correspond to t leaving or entering a boundary circle inside
the annulus. Note that (+∞,−1) is not really needed for the inlier computation
but it is useful for expressing the intervals.

Fig. 2 gives an example of a 0-Flake annulus with p ∈ C11 and q ∈ C00.
Doing this for all the couple of points among the set of points to fit yields the
optimal 0-Flake annulus in terms of number of inliers.
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Algorithm 1: 0-Flake annulus fitting

input : A set S of n grid points
output: A list V of centers and radius values for the best fitted 0-Flake annuli

1 begin
2 initialize Max = 0;
3 initialize the list V to the empty list;
4 foreach p ∈ S do
5 foreach q ∈ S do
6 foreach of the 16 different configurations of p and q do
7 compute the straight line ∆pq where the center are located;
8 initialize the list of parameters Lλ; foreach t ∈ S do
9 initialize the valide interval to [];

10 foreach For each one of the four boundary circle : do
11 compute the parameter λ for which the point t is ON

the boundary circles;
12 test a value in the interval ]∞, λ] to know if the point is

inside the boundary circle for this interval;
13 keep the valid interval It where t is inlier with the

following rule: when t belongs to the zero or four circles
it is an outlier;

14 foreach sub-interval [min,max] in It do
15 Add the couples (min, 1) and (max,−1) to the

parameter list Lλ;

16 Sort the pair elements (λk, fk) of Lλ with the values λk as keys;
17 Initialize F = 0;
18 foreach couple (λk, fk) in Lλ do
19 F = F + fk;
20 if F > Max and fk+1 = −1 then
21 Set Max = F ; Erase V and set it to the interval

[λk, λk+1] ;

22 if F = Max and fk+1 = −1 then
23 Add the interval [λk, λk+1] to V

24 return V;

4 Experiments

We used Mathematica for implementing our method. We applied our method for
2D noisy 0-Flake annuli as shown in fig. 4(a). A bounding region (center,radius)
of all the possible solutions corresponding to optimal consensus sets for this
image are shown in fig. 4(b).

The figure 5 presents a 0-Flake circular arc of 100 points and some degraded
versions of it: In each image, we keep 100 points but for the different degraded
versions of x% noise, we kept 100 − x random points of the original arc and
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Fig. 2. The 0-Flake annulus with p ∈ C11 and q ∈ C00 and an interval where the point
t belongs to the Flake annulus.

added x randomly located points as noise in the background. Part a) presents
the tested data : the noisy arc with x points (bottom) and this arc and its noisy
background (top). Part b) shows one solution for each case, the optimal number
of inliers found and the number of distinct limit solutions (corresponding to an
center interval end point).

5 Conclusion and Perspectives

In this paper we have presented a new method for fitting 0-Flake digital circles
to a set of points while fixing the thickness. Various papers have been written
on fitting circles or annuli but usually they have not dealt with fixed thicknesses
which is a fundamental property of digital circles. Our approach guarantees opti-
mal results from the point of view of maximal consensus sets: we are guaranteed
to fit a digital circle with the least amount of outliers. In terms of computation
time, this approach has a lower time complexity than the one presented in [2].
The method is general enough that is can be extended to 1-Flake circles, Andres
circles and probably most other types of digital circles [3, 9] with thicknesses not
limited to 1. This work opens many interesting perspectives for the future. One
obvious question that remains open is the question of the optimal time complex-
ity we can expect for such a problem. We have reasons to believe that we can not
beat a O(n3) time complexity simply because this is the optimal time complexity
for a similar problem of 3D plane fitting [16]. Now, the reason why we suspect
that the optimal time complexity might be the same is simply because of some
arguments coming from conformal space representations. This needs however to
be proved and an according method would need to be found. One of the inter-
esting aspects that has not been yet fully explored is that computing optimal
consensus sets or near optimal consensus sets allows us to classify points and
introduce notions of strong or weak inliers . We can for instance, differentiate
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Fig. 3. A representation of the number of times a point belongs to the optimal con-
sensus sets found for, on the left side an example with 85% noise and on the right side
an example with 90% noise.

inliers that belong to many optimal or near optimal consensus sets from points
that only belong to some of those solutions (See Figure 6. for an example). The
method we proposed seems to extends pretty well to higher dimension but we
need a formal proof of the Flake annulus characterization in higher dimensions.
A last perspective is of course fitting of other types of digital curves such as
digital conics for instance.
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Fig. 5. Tests with different levels of noise on a digital 0-Flake circular arc.


