Fractional elliptic equation with gradient nonlinearity and measure data - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2013

Fractional elliptic equation with gradient nonlinearity and measure data

Résumé

In this paper, we study fractional elliptic equation (E1) $ (-\Delta)^\alpha u+g(|\nabla u|)=\nu $ in a bounded regular domain $\Omega$ of $\R^N (N\ge2)$, satisfying (E2) $u=0$ in $\Omega^c$, where $(-\Delta)^\alpha$ denotes the fractional Laplacian with $\alpha\in(0,1)$, $\nu$ is a Radon measure and $g:\R\mapsto\R$ is a continuous function satisfying. We prove the existence of weak solutions for problem (E1)-(E2) when $\nu$ is Radon measure and $g$ is subcritical. Furthermore, the asymptotic behaviors and uniqueness of solutions are analyzed when $\nu$ is Dirac measure.
Fichier principal
Vignette du fichier
2-1 fractional ellitpic equation with gradient term.pdf (178.63 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00856008 , version 1 (30-08-2013)
hal-00856008 , version 2 (21-09-2013)
hal-00856008 , version 3 (22-09-2013)
hal-00856008 , version 4 (30-09-2013)
hal-00856008 , version 5 (04-10-2013)
hal-00856008 , version 6 (26-11-2013)

Identifiants

Citer

Marie-Françoise Bidaut-Veron, Huyuan Chen, Laurent Veron. Fractional elliptic equation with gradient nonlinearity and measure data. 2013. ⟨hal-00856008v1⟩
317 Consultations
447 Téléchargements

Altmetric

Partager

More