Fractional elliptic equation with gradient nonlinearity and measure data
Résumé
In this paper, we study fractional elliptic equation (E1) $ (-\Delta)^\alpha u+g(|\nabla u|)=\nu $ in a bounded regular domain $\Omega$ of $\R^N (N\ge2)$, satisfying (E2) $u=0$ in $\Omega^c$, where $(-\Delta)^\alpha$ denotes the fractional Laplacian with $\alpha\in(0,1)$, $\nu$ is a Radon measure and $g:\R\mapsto\R$ is a continuous function satisfying. We prove the existence of weak solutions for problem (E1)-(E2) when $\nu$ is Radon measure and $g$ is subcritical. Furthermore, the asymptotic behaviors and uniqueness of solutions are analyzed when $\nu$ is Dirac measure.
Fichier principal
2-1 fractional ellitpic equation with gradient term.pdf (178.63 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|