Semilinear fractional elliptic equations with gradient nonlinearity involving measures - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2013

Semilinear fractional elliptic equations with gradient nonlinearity involving measures

Huyuan Chen
  • Fonction : Auteur
  • PersonId : 934383

Résumé

We study the existence of solutions to the fractional elliptic equation (E1) $(-\Delta)^\alpha u+\epsilon g(|\nabla u|)=\nu $ in a bounded regular domain $\Omega$ of $\R^N (N\ge2)$, subject to the condition (E2) $u=0$ in $\Omega^c$, where $\epsilon=1$ or $-1$, $(-\Delta)^\alpha$ denotes the fractional Laplacian with $\alpha\in(1/2,1)$, $\nu$ is a Radon measure and $g:\R_+\mapsto\R_+$ is a continuous function. We prove the existence of weak solutions for problem (E1)-(E2) when $g$ is subcritical. Furthermore, the asymptotic behavior and uniqueness of solutions are described when $\nu$ is Dirac mass, $g(s)=s^p$, $p\geq 1$ and $\epsilon=1$.
Fichier principal
Vignette du fichier
2-8_fractional_ellitpic_equation_with_gradient_term.pdf (183.66 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00856008 , version 1 (30-08-2013)
hal-00856008 , version 2 (21-09-2013)
hal-00856008 , version 3 (22-09-2013)
hal-00856008 , version 4 (30-09-2013)
hal-00856008 , version 5 (04-10-2013)
hal-00856008 , version 6 (26-11-2013)

Identifiants

Citer

Huyuan Chen, Laurent Veron. Semilinear fractional elliptic equations with gradient nonlinearity involving measures. 2013. ⟨hal-00856008v3⟩
317 Consultations
447 Téléchargements

Altmetric

Partager

More