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Abstract

In this paper, we study fractional elliptic equation (E1) (−∆)αu+
g(|∇u|) = ν in a bounded regular domain Ω of RN (N ≥ 2), satisfying
(E2) u = 0 in Ωc, where (−∆)α denotes the fractional Laplacian with
α ∈ (0, 1), ν is a Radon measure and g : R 7→ R is a continuous function
satisfying. We prove the existence of weak solutions for problem (E1)-
(E2) when ν is Radon measure and g is subcritical. Furthermore, the
asymptotic behaviors and uniqueness of solutions are analyzed when ν
is Dirac measure.
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1 Introduction

Let Ω ⊂ R
N (N ≥ 2) be an open bounded C2 domain and g : R+ 7→ R+

be a continuous and nondecreasing function. The purpose of this paper is
to study the existence of weak solutions to the semilinear fractional elliptic
problem

(−∆)αu+ g(|∇u|) = ν in Ω,

u = 0 in Ωc,
(1.1)

where α ∈ (1/2, 1) and ν ∈ M(Ω, ρβ) with β ∈ [0, 2α − 1]. Here ρ(x) =
dist(x,Ωc) and M(Ω, ρβ) denotes the space of Radon measures in Ω satisfy-
ing

∫

Ω
ρβd|ν| < +∞. (1.2)

In particular, we denote that M(Ω, ρ0) = M
b(Ω) is the space of bounded

Radon measures. The operator (−∆)α is the fractional Laplacian defined as

(−∆)αu(x) = lim
ǫ→0+

(−∆)αǫ u(x),

where for ǫ > 0,

(−∆)αǫ u(x) = −

∫

RN

u(z)− u(x)

|z − x|N+2α
χǫ(|x− z|)dz (1.3)

and

χǫ(t) =

{

0, if t ∈ [0, ǫ],

1, if t > ǫ.

In the pioneering work, Brezis [6] studied the existence and uniqueness
of the solution to the semilinear Dirichlet elliptic problem

−∆u+ h(u) = ν in Ω,

u = 0 on ∂Ω,
(1.4)

where ν is a bounded measure in Ω and the function h is nondecreasing,
positive on (0,+∞) and satisfies that

∫ +∞

1
(h(s)− h(−s))s−2N−1

N−2 ds < +∞.

Also see Benilan and Brezis [1]. Later, Véron [27] improved this result
in replacing the Laplacian by more general uniformly elliptic second order
differential operator, where ν ∈ M(Ω, ρβ) with β ∈ [0, 1] and h is a nonde-
creasing function satisfying that

∫ +∞

1
(h(s)− h(−s))s−2N+β−1

N+β−2ds < +∞.
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The general semilinear elliptic equations involving measures have been in-
tensively studied, such as the equations involving measures boundary data
which was initiated by Gmira and Véron [16] and then this subject has being
extended in various ways, see [4, 5, 18, 19, 20, 21] for details. In a recent
work, Phuoc and Véron [23] considered the existence of solutions to problem

−∆u+ h(|∇u|) = ν in Ω,

u = 0 on ∂Ω,
(1.5)

where ν is a positive bounded measure in Ω , h is a continuous nondecreasing
function vanishing at 0 and satisfying that

∫ +∞

1
h(s)s−1− N

N−1 ds < +∞.

During the last years there has also been a renewed and increasing inter-
est in the study of linear and nonlinear intro-differential operators, especially,
the fractional Laplacian, motivated by great applications and by important
advances on the theory of nonlinear partial differential equations, and we
mention the references [7, 10, 11, 12, 9, 14, 24, 26, 25]. Recently, Chen and
Véron [12] studied semilinear fractional elliptic equation

(−∆)αu+ h(u) = ν in Ω,

u = 0 in Ωc,
(1.6)

where ν ∈ M(Ω, ρβ) with β ∈ [0, α]. They proved the existence and unique-
ness of the solution to (1.6) when the function h satisfies that

∫ +∞

1
(h(s)− h(−s))s−1−kα,βds < +∞,

where

kα,β =

{

N
N−2α , if β ∈ [0, N−2α

N α],

N+α
N−2α+β , if β ∈ (N−2α

N α,α].
(1.7)

Motivated by these results and in view of the nonlocal character of the
fractional Laplaican we are interested in the existence of weak solutions to
fractional equation involving gradient term and measure. Before stating
our main theorem we make precise the notion of weak solution used in this
article.

Definition 1.1 We say that u is a weak solution of (1.1), if u ∈ L1(Ω),
g(|∇u|) ∈ L1(Ω, ραdx) and

∫

Ω
[u(−∆)αξ + g(|∇u|)ξ]dx =

∫

Ω
ξdν, ∀ ξ ∈ Xα, (1.8)
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where Xα ⊂ C(RN ) is the space of functions ξ satisfying:

(i) supp(ξ) ⊂ Ω̄,

(ii) (−∆)αξ(x) exists for all x ∈ Ω and |(−∆)αξ(x)| ≤ C for some C > 0,

(iii) there exist ϕ ∈ L1(Ω, ραdx) and ǫ0 > 0 such that |(−∆)αǫ ξ| ≤ ϕ a.e. in
Ω, for all ǫ ∈ (0, ǫ0].

In order to state our main result, we introduce Gα the Green kernel of
(−∆)α in Ω and Gα[.] the Green operator defined as

Gα[ν](x) =

∫

Ω
Gα(x, y)dν(y), ∀ ν ∈ M(Ω, ρα). (1.9)

In section 2, we obtain some estimates by the properties of Gα[ν] which play
an important role in the analysis of the existence of weak solutions. Now
we state the main result when g is a absorption.

Theorem 1.1 Let Ω ⊂ R
N (N ≥ 2) be an open bounded C2 domain, α ∈

(1/2, 1) and p∗α = N
N−2α+1 . Assume that g : R+ → R+ is a continuous

function satisfying
∫ +∞

1
g(s)s−1−p∗αds < +∞. (1.10)

Then for any nonnegative Radon measure ν ∈ M(Ω, ρβ) with β ∈ [0, 2α−
1], problem (1.1) admits a nonnegative weak solution uν such that

Gα[ν]−Gα[g(|∇Gα[ν]|)] ≤ uν ≤ Gα[ν]. (1.11)

Remark 1.1 We note that the critical value p∗α is independent of β.

Remark 1.2 We don’t know if weak solution of (1.1) is unique. Because
we don’t find some inequality which plays the role of Kato’s inequality to
deal with the gradient term g(|∇u|).

Another interest is to consider the solution of (1.1) when g is a source,
i.e. g : R− → R− is a continuous function. Then we have following result:

Theorem 1.2 Let Ω ⊂ R
N (N ≥ 2) be an open bounded C2 domain, α ∈

(1/2, 1), ν ∈ M(Ω, ρβ) with β ∈ [0, 2α − 1] and p∗α = N
N−2α+1 . Assume that

g : R+ → R− is a continuous function such that there exists p < p∗α

−g(s) ≤ c1s
p + σ0 for s ≥ 0, (1.12)

for some c1 > 0 and σ0 > 0.
If (i) p ∈ (1, p∗α), σ0 and ‖ν‖M(Ω,ρβ) small enough; or (ii) p = 1,

c1 small enough; or (iii) p ∈ (0, 1), then problem (1.1) admits a weak
solution uν such that

Gα[ν] ≤ uν ≤ Gα[ν]−Gα[g(|∇Gα[ν]|)]. (1.13)
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We note that Theorem 1.2 deals with for general Radon measure ν, while
ν is nonnegative when g is an absorption.

The paper is organized as follows. In Section 2, we present some prelim-
inaries to obtain the estimate

‖∇Gα[ν]‖Mp∗α (Ω,ρα(x)dx) ≤ c2‖ν‖M(Ω,ρβ), c2 > 0

and investigate the related classical solution.
Section 3 is devoted to prove the main theorems. In Section 4, we analyze

the asymptotic behaviour of weak solutions to (1.1) when ν is a Dirac mass
and g is a power absorption.

2 Preliminary

2.1 Marcinkiewicz type estimate

In this subsection, we recall some definition and basic properties of Marcinkiewicz
spaces.

Definition 2.1 Let Ω ⊂ R
N be an open bounded domain and µ be a positive

Borel measure in Ω. For κ > 1, κ′ = κ/(κ − 1) and u ∈ L1
loc(Ω, dµ), we set

‖u‖Mκ(Ω,dµ) = inf{c ∈ [0,∞] :

∫

E
|u|dµ ≤ c

(
∫

E
dµ

)
1
κ′

, ∀E ⊂ Ω Borel set}

(2.1)
and

Mκ(Ω, dµ) = {u ∈ L1
loc(Ω, dµ) : ‖u‖Mκ(Ω,dµ) < ∞}. (2.2)

Mκ(Ω, dµ) is called the Marcinkiewicz space of exponent κ or weak Lκ

space and ‖.‖Mκ(Ω,dµ) is a quasi-norm. The following property holds.

Proposition 2.1 [2, 8] Assume 1 ≤ q < κ < ∞ and u ∈ L1
loc(Ω, dµ). Then

there exists c3(q, κ) > 0 such that

∫

E
|u|qdµ ≤ c3(q, κ)‖u‖Mκ(Ω,dµ)

(
∫

E
dµ

)1−q/κ

,

for any Borel set E of Ω.

Proposition 2.2 Let Ω ⊂ R
N (N ≥ 2) be an open bounded C2 domain and

ν ∈ M(Ω, ρβ) with β ∈ [0, 2α − 1]. Then

‖∇Gα[|ν|]‖Mp∗α (Ω,ρα(x)dx) ≤ c2‖ν‖M(Ω,ρβ), (2.3)

where ∇Gα[|ν|](x) =
∫

Ω∇xGα(x, y)d|ν|(y) and

p∗α =
N

N − 2α+ 1
. (2.4)
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Proof. For λ > 0 and y ∈ Ω, we denote

ωλ(y) = {x ∈ Ω \ {y} : |∇xGα(x, y)|ρ
α(x) > λρβ(y)}, mλ(y) =

∫

ωλ(y)
dx.

From [10], there exists c4 > 0 such that for any (x, y) ∈ Ω× Ω with x 6= y,

Gα(x, y) ≤ c4 min

{

1

|x− y|N−2α
,

ρα(x)

|x− y|N−α
,

ρα(y)

|x− y|N−α

}

, (2.5)

Gα(x, y) ≤ c4
ρα(y)

ρα(x)|x − y|N−2α
, (2.6)

and by Corollary 3.3 in [3], we have

|∇xGα(x, y)| ≤ NGα(x, y)max

{

1

|x− y|
,

1

ρ(x)

}

, (2.7)

which implies that for some c5 > 0,

|∇xGα(x, y)| ≤ max

{

c5ρ
α(y)

ρα(x)|x− y|N−2α+1
,
c5ρ

α−1−s(x)ρs(y)

|x− y|N−α

}

, (2.8)

where s ∈ [0, 2α − 1] will be chosen later.
Therefore, for 2α− 1− s ≥ 0, we have

|∇xGα(x, y)|ρ
α(x) ≤ max

{

c5ρ
α(y)

|x− y|N−2α+1
,
c5ρ

2α−1−s(x)ρs(y)

|x− y|N−α

}

≤ max

{

c5ρ
α(y)

|x− y|N−2α+1
,

c5ρ
s(y)

|x− y|N−α

}

.

Since N − 2α+1 > N −α and 2α− 1− s ≥ 0, then there exists some c6 > 0
such that

ωλ(y) ⊂
{

x ∈ Ω : |x− y| ≤ c6 max{ρ
α−β

N−2α+1 (y)λ− 1
N−2α+1 , ρ

s−β
N−α (y)λ− 1

N−α }
}

.

Choosing s = β ∈ [0, 2α − 1] and then for λ > 1,

ωλ(y) ⊂ {x ∈ Ω : |x− y| ≤ c6λ
− 1

N−2α+1 }. (2.9)

As a consequence,
mλ(y) ≤ c7λ

−p∗α,

where c7 > 0 independent of y and λ.
For any Borel set E of Ω and λ > 1, we have

∫

E
|∇xGα(x, y)|ρ

α(x)dx ≤

∫

ωλ(y)
|∇xGα(x, y)|ρ

α(x)dx+ λρβ(y)

∫

E
dx
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and
∫

ωλ(y)
|∇xGα(x, y)|ρ

α(x)dx = −

∫ ∞

λρβ(y)
sdms(y)

= λρβ(y)mλ(y) +

∫ ∞

λρβ(y)
ms(y)ds

≤ c8ρ
β(y)λ1−p∗α ,

for some c8 > 0. Thus,
∫

E
|∇xGα(x, y)|ρ

α(x)dx ≤ ρβ(y)

(

c8λ
1−p∗α + λ

∫

E
dx

)

.

Choosing λ = (
∫

E dx)
− 1

p∗α , we have

∫

E
|∇xGα(x, y)|ρ

α(x)dx ≤ c8ρ
β(y)(

∫

E
dx)

p∗α−1

p∗α , ∀y ∈ Ω.

Therefore,
∫

E
|∇Gα[|ν|](x)|ρ

α(x)dx =

∫

Ω

∫

E
|∇xGα(x, y)|ρ

α(x)dxd|ν(y)|

≤

∫

Ω
ρβ(y)d|ν(y)| sup

x∈K
ρ−β(y)

∫

E
|∇xGα(x, y)|ρ

α(x)dx

≤ c8

∫

Ω
ρβ(y)d|ν(y)|

(
∫

E
dx

)

p∗α−1

p∗α

≤ c8‖ν‖M(Ω,ρβ)

(
∫

E
dx

)

p∗α−1

p∗α

.

As a consequence,

‖∇Gα[|ν|]‖Mp∗α (Ω,ραdx) ≤ c8‖ν‖M(Ω,ρβ).

We complete the proof. �

The next proposition is a higher order regularity result

Proposition 2.3 [12] Assume that ν ∈ M(Ω, ρβ) with 0 ≤ β ≤ α. Then
for q ∈ (1, N

N+β−2α ) there exists c9 > 0 such that for any ν ∈ L1(Ω, ρβdx)

‖Gα[ν]‖W 2α−γ,q(Ω) ≤ c9‖ν‖L1(Ω,ρβdx) (2.10)

where q′ = q
q−1 , γ = β + N

q′ if β > 0 and γ > N
q′ if β = 0.

Proposition 2.4 Assume that ν ∈ M(Ω, ρβ) with 0 ≤ β ≤ α, then the
mapping ν 7→ |∇Gα[ν]| is compact from L1(Ω, ρβdx) into Lq(Ω) for any
q ∈ [1, N

N+β+1−2α ).
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Proof. From the previous proposition we see that Gα[ν] ∈ W 2α−γ,p(Ω),
where 2α−γ > 1 for p ∈ (1, N

N+β−2α ). Therefore, |∇Gα[ν]| ∈ W 2α−γ−1,p(Ω)
and

‖∇Gα[ν]‖W 2α−γ−1,p(Ω) ≤ c9‖ν‖L1(Ω,ρβdx).

By [22, Th 6.5], the embedding of W 2α−γ−1,p(Ω) into Lq(Ω) is compact. We
complete the proof. �

2.2 Classical solution

In order to prove our main theorems, we consider the existence of classical
solution to problem

(−∆)αu+ g(|∇u|) = f in Ω,

u = 0 in Ωc.
(2.11)

We denote that g+ = max{g, 0} and g− = max{−g, 0}.

Theorem 2.1 Suppose that Ω is an open bounded C2 domain of RN (N ≥
2), α ∈ (1/2, 1) and the function g : R → R is bounded. Assume more that
there exists θ > 0 such that g ∈ Cθ(R) and f ∈ Cθ(Ω̄). Then problem (2.11)
admits a unique classical solution u such that

Gα[f ]−Gα[g+(|∇Gα[f ]|)] ≤ u ≤ Gα[f ] +Gα[g−(|∇Gα[f ]|)] (2.12)

and if f is nonnegative, then u ≥ 0.
Furthermore, the mapping g 7→ u is decreasing and f 7→ u is increasing.

To this end, we first introduce following Schauder fixed point theorem.

Theorem 2.2 [15] Assume that X is a Banach space and T : X → X is a
compact operator such that

T (O) ⊂ O,

where O 6= Ø is a closed bounded convex set of X. Then there exists fixed
point x ∈ O of T , i.e.

Tx = x.

Now we are ready to prove Theorem 2.1.

Proof of Theorem 2.1. We divide the proof into several steps.
Step 1. To prove the existence. We define the operator T as

Tu = Gα [f − g(|∇u|)] , u ∈ W 1,1
0 (Ω),

where W 1,1
0 (Ω) is the closure of {w ∈ C∞(RN ) : supp(w) ⊂ Ω̄} under the

norm of W 1,1(Ω). We claim first that T is compact operator. In fact, for u ∈
W 1,1

0 (Ω), we have that f − g(|∇u|) ∈ L1(Ω) and then by using Proposition
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2.4, implies that Tu ∈ W 2α−γ,p
0 (Ω) where γ = p−1

p N and 2α − γ > 1 for

p ∈ (1, N
N−2α). Then the embedding W 2α−γ,p

0 (Ω) →֒ W 1,1
0 (Ω) is compact, so

T is compact operator. Moreover, using (2.8) with s = 0, we have that

‖Tu‖W 1,1(Ω) ≤ ‖Gα[f ]‖W 1,1(Ω) + ‖Gα[g(|∇u|)]‖W 1,1(Ω)

≤
(

‖f‖L∞(Ω) + ‖g(|∇u|)‖L∞(Ω)

)

‖

∫

Ω
Gα(·, y)dy‖W 1,1(Ω)

= c10
(

‖f‖L∞(Ω) + ‖g‖L∞(R+)

)

, (2.13)

where c10 = ‖
∫

ΩGα(·, y)dy‖W 1,1(Ω).

Let O = {u ∈ W 1,1
0 (Ω) : ‖u‖W 1,1(Ω) ≤ c10(‖f‖L∞(Ω) + ‖g‖L∞(R+)) },

which is a closed and convex set of W 1,1
0 (Ω). Combining with (2.13), then

T (O) ⊂ O,

and using Theorem 2.2 to obtain a fixed point u ∈ Y, that is, Tu = u.
Next we show that u is a classical solution of (2.11). Let open set O

satisfy O ⊂ Ō ⊂ Ω. By Proposition 2.3 in [24], for any σ ∈ (0, 2α), there
exists c11 > 0 such that

‖u‖Cσ(O) ≤ c11{‖g(|∇u|)‖L∞(Ω) + ‖f‖L∞(Ω)},

and by choosing σ = 2α+1
2 ∈ (1, 2α), then

‖|∇u|‖Cσ−1(O) ≤ c11{‖g(|∇u|)‖L∞(Ω) + ‖f‖L∞(Ω)},

and then applied Corollary 2.4 in [24], u is C2α+ǫ0 locally in Ω for some
ǫ0 > 0. Then u is a classical solution of (2.11). Moreover, from [12], we have

∫

Ω
[u(−∆)αξ + g(|∇u|)ξ]dx =

∫

Ω
ξfdx, ∀ξ ∈ Xα. (2.14)

Step 2. To prove (2.12). Denote by U− = Gα[f ] − Gα[g+(|∇Gα[f ]|)] and
U+ = Gα[f ] +Gα[g−(|∇Gα[f ]|)]. Then U± = 0 in Ωc and

(−∆)αU− + g+(|∇Gα[f ]|) = f in Ω

and
(−∆)αU+ = f + g−(|∇Gα[f ]|) in Ω

We claim that
U− ≤ u ≤ U+ in Ω. (2.15)

We prove the first inequality of (2.15). If not, there exists x0 ∈ Ω such that

(U− − u)(x0) = max
x∈Ω

{(U− − u)(x)} > 0.

9



Then
(−∆)α(U− − u)(x0) > 0 and ∇U−(x0) = ∇u(x0).

This implies that

(−∆)α(U− − u)(x0) + g+(|∇U(x0)|)− g(|∇u(x0)|) > 0. (2.16)

However, since u is the solutions of (2.11), then we have

(−∆)α(U− − u)(x0) + g+(|∇U−(x0)|) − g(|∇u(x0)|) = f(x0)− f(x0) = 0.

This is impossible with (2.16). Therefore, (2.12) follows by (2.15). Use the
same way to prove the second inequality of (2.15).

In particular, for f ≥ 0, since the function limx→∂Ω U(x) = 0, if u is not
nonnegative, then there exists x0 ∈ Ω such that

u(x0) = min
x∈Ω

u(x) < 0,

then we see that ∇u(x0) = 0 and (−∆)αu(x0) < 0, This contradicts that u
is the solution of (2.11).

Step 3. To show that the mapping g 7→ u is decreasing and f 7→ u is
increasing. We just give the proof of the first argument, the second is similar
to prove. Let g1 and g2 satisfy our hypotheses for g and g1 ≤ g2. Denote u1
and u2 the solution of (2.11) with g1 and g2 respectively.

If there exists x0 ∈ Ω such that

(u1 − u2)(x0) = min
x∈Ω

{(u2 − u1)(x)} < 0.

Then we have

(−∆)α(u1 − u2)(x0) < 0, ∇u1(x0) = ∇u2(x0).

This implies that

(−∆)α(u1 − u2)(x0) + g1(|∇u1(x0)|)− g2(|∇u2(x0)|) < 0. (2.17)

However,

(−∆)α(u1 − u2)(x0) + g1(|∇u1(x0)|)− g2(|∇u2(x0)|) = f(x0)− f(x0) = 0

and the contradiction is obvious. Then u1 ≥ u2.

Finally. The uniqueness follows by the monotonicity in Step 3. The proof
is complete. �
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3 Proof of main theorems

3.1 The absorption nonlinearity

In this subsection, we prove the existence of weak solution to (1.1) when g
is a absorption term, that is, g(s) ≥ 0 for all s ≥ 0.
Proof of Theorem 1.1. Existence. We define

Cβ(Ω̄) = {ζ ∈ C(Ω̄) : ρ−βζ ∈ C(Ω̄)}

endowed with the norm

‖ζ‖Cβ(Ω̄) = ‖ρ−βζ‖C(Ω̄).

We consider a sequence nonnegative functions {νn} ⊂ C1(Ω̄) such that νn →
ν in the duality sense with Cβ(Ω̄), which means

lim
n→∞

∫

Ω̄
ζνndx =

∫

Ω̄
ζdν (3.1)

for all ζ ∈ Cβ(Ω̄). It follows from the Banach-Steinhaus theorem that
‖νn‖M(Ω) is bounded independently of n. We denote by {gn} defined on

R+ a sequence of Cθ and nonnegative functions such that

gn ≤ gn+1 ≤ g, sup
s∈R+

gn(s) = n and lim
n→∞

‖gn − g‖L∞
loc

(R+) = 0. (3.2)

By Proposition 2.1, there exists a unique nonnegative solution un of (1.1)
with νn and gn, therefore

∫

Ω
(un + gn(|∇un|)η1) dx ≤

∫

Ω
νnη1dx ≤ C‖ν‖M(Ω,ρβ). (3.3)

Therefore ‖gn(|∇un|)‖M(Ω,ρα) is bounded independently of n. For ǫ > 0, set

ξǫ = (η1 + ǫ)
β
α − ǫ

β
α , which is concave in the interval η(ω̄). By Lemma 2.3

part (ii) in [12], we see that

(−∆)αξǫ =
β

α
(η1 + ǫ)

1
α (−∆)αη1 −

β(β − α)

α2
(η1 + ǫ)

β−2α
α

∫

Ω

(η1(y)− η1(x))
2

|y − x|N+2α
dy

≥
β

α
(η1 + ǫ)

β−α
α ,

and ξǫ ∈ Xα. Since
∫

Ω
(|un|(−∆)αξǫ + gn(|∇un|)ξǫ) dx ≤

∫

Ω
ξǫd|νn|,

we obtain
∫

Ω

(

β

α
|un|(η1 + ǫ)

β−α
α + gn(|∇un|)ξǫ

)

dx ≤

∫

Ω
ξǫd|νn|.

11



If we let ǫ → 0, we obtain
∫

Ω

(

β

α
|un|η

β−α
α

1 + gn(|∇un|)η
β
α
1

)

dx ≤

∫

Ω
η

β
α
1 d|νn|.

By Lemma 2.3 in [12], we derive the estimate
∫

Ω

(

|un|ρ
β−α + gn(|∇un|)ρ

β
)

dx ≤ c12‖νn‖M(Ω,ρβ) ≤ c13‖ν‖M(Ω,ρβ). (3.4)

Then νn, gn(|∇un|) is uniformly bounded in M(Ω, ρβ). Since un = G[νn −
gn(|∇un|)], then

‖|∇un|‖Mp∗α (Ω,ραdx) ≤ ‖νn‖M(Ω,ρβ) + ‖gn(|∇un|)‖M(Ω,ρβ)

≤ c14‖ν‖M(Ω,ρβ).

By Corollary 2.4 the sequence {un}, {|∇un|} are relatively compact in
the Lq(Ω) for 1 ≤ q < N

N−2α and 1 ≤ q < N
N−2α+1 , respcetively. Therefore

there exist a sub-sequence {unk
} and some u ∈ Lq(Ω) such that |∇unk

| →
|∇u| in Lq(Ω) and almost every where in Ω. Furthermore gnk

(|∇unk
|) →

g(|∇u|) almost every where in Ω. For λ > 0, we set Sλ = {x ∈ Ω :
|∇unk

(x)| > λ} and ω(λ) =
∫

Sλ
ρα(x)dx. Then for any Borel set E ⊂ Ω, we

have
∫

E
gnk

(|∇unk
|)|ρα(x)dx ≤

∫

E
g(|∇unk

|)|ρα(x)dx

=

∫

E∩Sc
λ

g(|∇unk
|)ρα(x)dx+

∫

E∩Sλ

g(|∇unk
|)ρα(x)dx

≤ g̃(λ)

∫

E
ραdx+

∫

Sλ

g(|∇unk
|)ρα(x)dx

≤ g̃(λ)

∫

E
ραdx−

∫ ∞

λ
g(s)dω(s),

where g̃(s) = maxt∈[0,s]{g(t)}. But

∫ ∞

λ
g(s)dω(s) = lim

T→∞

∫ T

λ
g(s)dω(s).

Since |∇unk
| ∈ Mp∗α(Ω, ραdx), ω(s) ≤ c15s

−p∗α and

−

∫ T

λ
g(s)dω(s) = −

[

g(s)ω(s)

]s=T

s=λ

+

∫ T

λ
ω(s)dg(s)

≤ g(λ)ω(λ) − g(T )ω(T ) + c15

∫ T

λ
s−p∗αdg(s)

≤ g(λ)ω(λ) − g(T )ω(T ) + c15

(

T−p∗αg(T )− λ−p∗αg(λ)
)

+
c15

p∗α + 1

∫ T

λ
s−1−p∗αg(s)ds.

12



By assumption (1.10) there exists {T} → ∞ such that T−p∗αg(T ) → 0 when
n → ∞. Furthermore g(λ)ω(λ) ≤ cλ−p∗αg(λ), therefore

−

∫ ∞

λ
g(s)dω(s) ≤

c15
p∗α + 1

∫ ∞

λ
s−1−p∗αg(s)ds.

Notice that the above quantity on the right-hand side tends to 0 when
λ → ∞. The conclusion follows: for any ǫ > 0 there exists λ > 0 such that

c15
p∗α + 1

∫ ∞

λ
s−1−p∗αg(s)ds ≤

ǫ

2

and δ > 0 such that
∫

E
ρα(x)dx ≤ δ =⇒ g(λ)

∫

E
dx ≤

ǫ

2
.

This proves that {gnk
(|∇unk

|)} is uniformly integrable in L1(Ω, ρα(x)dx).
Then gnk

(|∇unk
|) → g(|∇u|) in L1(Ω, ρα(x)dx) by Vitali convergence theo-

rem. Letting nk → ∞ in the identity
∫

Ω
(unk

(−∆)αξ + ξgnk
(|∇unk

|)) dx =

∫

Ω
νnk

ξdx

where ξ ∈ Xα, it infers that u is a weak solution of (1.1). Since unk
is

nonnegative, so is u.

To prove (1.11). In the proof of the existence, we have know that unk

satisfies (2.12), that is

Gα[νnk
]−Gα[gnk

(|∇Gα[νnk
]|)] ≤ unk

≤ Gα[νnk
].

We observe thatGα[νnk
] → Gα[ν] a.e. in Ω, and gnk

(|∇Gα[νnk
]|) → g(|∇Gα[ν]|)

in L1(Ω, ραdx). Then

Gα[νnk
]−Gα[gnk

(|∇Gα[νnk
]|)] → Gα[ν]−Gα[g(|∇Gα[ν]|)] a.e. in Ω.

Therefore, the solution u obtained as the limit of unk
satisfies (1.11). �

3.2 The source nonlinearity

The purpose of this section is to study the existence of weak solutions to the
semilinear fractional elliptic problem with gradient source term g satisfying
g(s) ≤ 0 for s ≥ 0.

Proof of Theorem 1.2. Let {νn} be a sequence of C2 functions con-
verging to ν in the sense of (3.1), {gn} defined on R+ a sequence of Cθ,
negative functions satisfying

gn ≥ gn+1 ≥ g, inf
s∈R+

gn(s) = −n and lim
n→∞

‖gn − g‖L∞
loc

(R+) = 0

13



and

M(v) = (

∫

Ω
|∇v|pρβdx)

1
p .

We may assume that ‖νn‖M(Ω,ρβ) ≤ 2‖ν‖M(Ω,ρβ ). Denote u1 = 0 and

(−∆)αun = −gn−1(|∇un−1|) + νn.

On the one hand, by (1.12) and Proposition 2.2,

(

∫

Ω
|∇un|

p∗αραdx)
1
p∗α ≤ c2‖ − g(|∇un−1|) + νn‖M(Ω,ρβ)

≤ c2[‖ − g(|∇un−1|)‖L1(Ω,ρβdx) + 2‖ν‖M(Ω,ρβ)]

≤ c2c1

∫

Ω
|∇un−1|

pρβdx+ c16σ0 + 2c2‖ν‖M(Ω,ρβ),(3.5)

where c16 = c2
∫

Ω ρβdx.
On the other hand,

(

∫

Ω
|∇un|

pρβdx)
1
p ≤ (

∫

Ω
ρ

βp∗α−α

p∗α−p dx)
1
p
− 1

p∗α (

∫

Ω
|∇un|

p∗αραdx)
1
p∗α , (3.6)

where
∫

Ω ρ
βp∗α−α

p∗α−p dx is bounded, since βp∗α−α
p∗α−p > −1.

Along with (3.5) and (3.6), we have

M(un) ≤ c17M(un−1)
p + c18‖ν‖M(Ω,ρβ) + c16σ0,

where c17 = c2c1(
∫

Ω ρ
βp∗α−α

p∗α−p dx)
1
p
− 1

p∗α > 0 and c18 > 0 independent of n.
Then by induction, there exists λ > 0 such that M(un) ≤ λ for any n ≥ 1,
which holds if

c17λ
p + c18‖ν‖M(Ω,ρβ) ≤ λ. (3.7)

When p ∈ (1, p∗α), (3.7)holds if ‖ν‖M(Ω,ρβ) is small enough; when p ∈ (0, 1),
(3.7)holds with any restriction; when p = 1, (3.7)holds if c17 < 1.

�

4 Further study for g an absorption and ν Dirac

mass

4.1 Regularity

In order to tackle the uniqueness, we have to make use of the properties of
classical solution, since Kato’s inequality is invalid to obtain uniqueness for
gradient nonlinear term. To this end, we start by

14



Proposition 4.1 Assume that 0 ∈ Ω is an open, bounded and C2 domain,
α ∈ (12 , 1), g : R → R is continuous. and u is a weak nonnegative solution
of (1.1). If g(s) ≥ 0 for s ≥ s0 with s0 ≥ 0, then u be a classical solution of

(−∆)αu+ g(|∇u|) = 0 in Ω \ {0},

u = 0 in Ωc
(4.1)

and
0 ≤ u ≤ Gα[δ0]. (4.2)

Proof. Let Ωk = (1 + 1
k )Ω, then there exists k0 > 0 such that Ωk is

C2 domain for k ≥ k0 and {vk} be a sequence functions in C2(RN ) with
supp(vk) ⊂ Ωk such that

vk → u in L1(Ω) and g(|∇vk|) → g(|∇u|) in L1(Ω, ραdx).

On the one hand, (−∆)αvk and g(|∇vk|) are sequences of C2−2α(Ωk)
positive functions and denote

fk = (−∆)αvk + g(|∇vk|) x ∈ Ωk.

On the other hand, for any ξ ∈ Xα(Ω), then ξ ◦k ∈ Xα(Ωk), where Xα(Ω) =
Xα is defined (1.8) with respect to Ω, Xα(Ωk) does with to Ωk and

ξ ◦ k(x) = ξ((1 +
1

k
)−1x).

Combining with Lemma 2.1 (ii) and Lemma 2.3 in [12], we have

∫

Ωk

[vk(−∆)αξ ◦ k + g(|∇vk|)ξ ◦ k]dx =

∫

Ωk

ξ ◦ kfkdx, ∀ ξ ∈ Xα. (4.3)

We observe that for ξ ∈ Xα(Ω), (−∆)αξ ◦ k → (−∆)αξ in L∞ and ξ ◦ k → ξ
uniformly in R

N as k → ∞, thus we have

∫

Ωk

[vk(−∆)αξ◦k+g(|∇vk|)ξ◦k]dx →

∫

Ω
[u(−∆)αξ+g(|∇u|)ξ]dx as k → ∞.

Then we have fk → δ0 as k → ∞ in the distribution sense. Therefore,
Gα,k[fk] → Gα[δ0] in R

N \ {0} as k → ∞ and there exists c19 > 0 such that
for all k > N0, |Gα,k[fk]| ≤ c19Gα,k[δ0] in R

N \ {0} as where Gα,k is the
Green operator in (1.9) with to Ωk.

As a consequence,

0 ≤ vk = Gα,k[fk]−Gα,k[g(|∇vk|)] (4.4)

≤ c20Gα,k[δ0] + max
s∈[0,s0]

|g(s)|.
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Denote by O an open set satisfying Ō ⊂ Ω \ Br with r > 0 and Ok =
(1 + 1

k )O, then there exists c21 > 0 independent of k such that

‖vk‖L∞(Ok) ≤ c21‖Gα,k[δ0]‖L∞(O) + max
s∈[0,s0]

|g(s)| and

‖vk‖L1(Ωk) ≤ c21‖Gα,k[δ0]‖L1(Ω) + max
s∈[0,s0]

|g(s)|.

By Corollary 2.4 in [24] and Lemma 3.1 in [13], for some ǫ > 0 and β ∈
(0, 2α), we have

‖vk‖C2α+ǫ(Ok)

≤ c22{‖vk‖
p
L∞(Ωk\B r

2
) + ‖fk‖L∞(Ωk\B r

2
) + ‖vk‖Cβ(Ωk\B 3r

4
)}

≤ c23{‖vk‖
p
L∞(Ωk\B r

2
) + ‖vk‖L∞(Ωk\B r

2
) + ‖fk‖L∞(Ωk\B r

2
) + ‖vk‖L1(Ωk)}

≤ c24{‖Gα,k[δ0]‖
p
L∞(Ωk\B r

2
) + ‖Gα,k[δ0]‖L∞(Ωk\B r

2
)

+‖Gα,k[δ0]‖L1(Ωk) + max
s∈[0,s0]

|g(s)|}

≤ c25{‖Gα[δ0]‖
p
L∞(Ω\B r

2
) + ‖Gα[δ0]‖L∞(Ω\B r

2
)

+‖Gα[δ0]‖L1(Ω) + max
s∈[0,s0]

|g(s)|},

where constants c23, c24, c25 > 0 independent of k. Therefore, together with
(2.13) and Arzela-Ascoli Theorem, we have that u ∈ C2α+ ǫ

2 (O), which im-
plies that u is C2α+ ǫ

2 locally in Ω \ {0}. Therefore, u is a classical solution
of (4.1). By (4.4), we have

0 ≤ u ≤ Gα[δ0].

�

Corollary 4.1 Assume that 0 ∈ Ω is an open, bounded and C2 domain,
α ∈ (12 , 1) and g : R+ → R+ is continuous. Let u is a weak solution of (1.1)
such that u− is uniformly bounded in any compact set of Ω \ {0}. Then u is
a classical solution of (4.1).

Proof. The proof proceeds the same as the one of Proposition 4.1 just
replacing (4.4) by

−CGα,k[δ0] ≤ vk ≤ CGα,k[δ0],

for some C > 0. �
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4.2 Uniqueness and asymptotic behavior with Dirac mass

This section is devote to consider the behavior of the solution of (1.1) in
particular case. We consider the following problem

(−∆)αu+ |∇u|p = δ0 in Ω,

u = 0 in Ωc,
(4.5)

where 0 ∈ Ω and δ0 is Dirac mass.

Theorem 4.1 Assume that 0 ∈ Ω is an open, bounded and C2 domain,
α ∈ (12 , 1) and 0 < p < p∗α. Then problem (4.5) admits a solution u such
that
(i) if p ∈ ( 2α

N−2α+1 , p
∗
α),

C−1

|x|(N−2α+1)p−2α
< u(x)−

C0

|x|N−2α
≤

C

|x|(N−2α+1)p−2α
, x ∈ Br(0) \ {0};

(ii) if p = 2α
N−2α+1 ,

−C−1 ln(|x|) < u(x)−
C0

|x|N−2α
≤ −C ln(|x|), x ∈ Br(0) \ {0};

(iii) if p < 2α
N−2α+1 ,

C−1 < u(x)−
C0

|x|N−2α
≤ C, x ∈ Br(0) \ {0},

where r = min{ρ(0),1}
4 , C0 = limx→0Gα(x, 0)|x|

N−2α and C > 0.
Moveover, the uniqueness holds in the sense of

lim
|x|→0+

u(x)|x|N−2α = C0. (4.6)

We observe that if g(s) = sp with p < p∗α, (1.10) holds. Then the
asymptotic behavior of solution obtained by Theorem 1.1 is controlled by
Gα[δ0] and Gα[δ0] − Gα[|∇Gα[δ0]|

p]. Therefore, we have to do estimate of
the behavior of Gα[|∇Gα[δ0]|

p].

Lemma 4.1 Assume the hypotheses of Theorem 4.1 holds. Then there ex-
ists a positive constant C = C(N,α,Ω) > 1 such that
(i) if p ∈ ( 2α

N−2α+1 , p
∗
α),

1

C
≤ Gα[|∇Gα[δ0]|

p]|x|−2α+(N−2α+1)p ≤ C, x ∈ Br(0) \ {0}; (4.7)

(ii) if p = 2α
N−2α+1 ,

1

C
≤ Gα[|∇Gα[δ0]|

p](− ln |x|)−1 ≤ C, x ∈ Br(0) \ {0}; (4.8)
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(iii) if p < 2α
N−2α+1 ,

1

C
≤ Gα[|∇Gα[δ0]|

p] ≤ C, x ∈ Br(0) \ {0}, (4.9)

where r = 1
4 min{1, ρ(0)}.

Proof. (i) In the case of 2α
N−2α+1 < p < p∗α. On one side, by the fact of

p < 1
1−α and Gα[δ0] = G(x, 0), then for x ∈ Br(0) \ {0},

Gα[|∇Gα[δ0]|
p](x) =

∫

Ω
G(x, y)|∇yG(y, 0)|pdy

≤

∫

Ω

C0

|x− y|N−2α

ρ(α−1)p(y)

ραp(0)

Cp
0

|y|(N−2α+1)p
dy

≤ C[

∫

Br

1

|x− y|N−2α

1

|y|(N−2α+1)p
dy +

∫

Ω\Br

ρ(α−1)p(y)dy]

=: C[E1(x) +E2(x)].

Since N − 2α < N and (N − 2α+ 1)p < N , then

E1(x) = |x|2α−(N−2α+1)p

∫

B r
|x|

1

|ex − y|N−2α

1

|y|(N−2α+1)p
dy

≤ C1|x|
2α−(N−2α+1)p[1 +

∫ r
|x|

1
s2α−1−(N−2α+1)pds]

≤ C2|x|
2α−(N−2α+1)p, x ∈ Br(0) \ {0}. (4.10)

where ex = x
|x| . It is obvious that

E2(x) ≤ C, x ∈ Br(0) \ {0}.

by the fact of p < p∗α ≤ 1
1−α . Then

Gα[|∇Gα[δ0]|
p](x) ≤ C2|x|

2α−(N−2α+1)p, x ∈ Br(0) \ {0}. (4.11)

On the other side, for x ∈ Br(0) with r = ρ(0)/4, from [3], we have

|∇xG(x, 0)| ≥
C0

|x|N−2α+1
, x ∈ Ω.

Then for x ∈ Br(0) \ {0}, we have

Gα[|∇Gα[δ0]|
p](x) ≥ C

∫

Br(0)
1

|y−x|N−2α
1

|y|(N−2α)pdy

≥ C|x|2α−(N−2α)p,
(4.12)

for some C > 0. As a consequence, we deduce (4.7) by (4.11) and (2.17).
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(ii) In the case of p = 2α
N−2α+1 . It is obvious that (4.10) becomes

Gα[|∇Gα[δ0]|
p](x) ≤ C +

∫ r
|x|

1
s−1ds ≤ C(1− ln |x|)

and (4.12) becomes

Gα[|∇Gα[δ0]|
p](x) ≥ C +

∫ D
|x|

1
s−1ds ≤ C(1− ln |x|).

(iii) In the case of p < 2α
N−2α+1 . In this case, we only need to prove

that
∫

Ω
1

|y−x|N−2α|y|(N−2α+1)pdy is bounded. Indeed, for x ∈ Br(x0) with

r = min{1,d(x0)}
8 , by Young inequality and the fact of (N − 2α)(p + 1) < N ,

we obtain that
∫

B2r(0)

1

|y − x|N−2α|y|(N−2α+1)p
dy

≤

∫

B2r(0)
[

1

|y − x|(N−2α)(p+1)
+

1

|y|(N−2α+1)(p+1)
]dy

≤

∫

B4r(x)

1

|y − x|(N−2α)(p+1)
dy +

∫

B2r(0)

1

|y|(N−2α+1)(p+1)
dy

≤ C.

Then (4.12) becomes

Gα[|∇Gα[δ0]|
p](x) ≥ C.

We complete the proof. �

Proof of Theorem 4.1. The existence follows Theorem 1.1 and the solution
u satisfies that

Gα[δ0]−Gα[|∇Gα[δ0]|
p] ≤ u ≤ Gα[δ0].

We deduce the asymptotic behavior of solution u by Gα[δ0] = Gα(x, 0) and
Lemma 4.1.

To prove uniqueness. Let u and ũ be two solutions of (4.5), then u and
ũ are classical solution of (4.1). For any ǫ > 0, let uǫ = (1 + ǫ)u, we claim
that

ũ ≤ uǫ. (4.13)

In fact, since limx→0 ũ|x|
N−2α = C0 and limx→0 uǫ|x|

N−2α = (1 + ǫ)C0,
if not, there exists some point x0 ∈ Ω \ {0} such that

(ũ− uǫ)(x0) = max
x∈Ω

(ũ− uǫ)(x) > 0.
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This implies that (−∆)α(ũ− uǫ)(x0) < 0 and ∇ũ(x0) = ∇uǫ(x0). Then on
the one hand, we have

(−∆)α(ũ− uǫ)(x0) + |∇ũ|p(x0)− |∇uǫ|
p(x0) = 0 (4.14)

On the other hand, (−∆)αũ(x0) + |∇ũ|p(x0) = 0 and (−∆)αuǫ(x0) =
−(1 + ǫ)|∇u|p and |∇uǫ|

p(x0) = (1 + ǫ)p|∇u|p and then

(−∆)α(ũ− uǫ)(x0) + |∇ũ|p(x0)− |∇uǫ|
p(x0) > 0,

which is contradiction with (4.14). Take ǫ → 0 in (4.13), then we have
ũ ≤ u. Similarly, u ≤ ũ. The proof is complete. �
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[19] M. Marcus and L. Véron, The boundary trace of positive solutions
of semilinear elliptic equations: the supercritical case, J. Math. Pures
Appl. 77, 481-524 (1998).
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