Wiener criteria for existence of large solutions of quasilinear elliptic equations with absorption
Résumé
We obtain necessary conditions expressed in terms of Wiener type tests involving Hausdorff or Bessel capacities for the existence of large solutions to equations (1) $-\Gd_pu+e^{u}-1=0$ or (2) $-\Gd_pu+u^q=0$ in a bouded domain $\Gw$ when $q>p-1>0$. We apply our results to equations (3) $-\Gd_pu+\abs{\nabla u}^{q}+bu^{p-1}=0$, (4) $-\Gd u+\abs{\nabla u}^{2}+u^{q}=0$ and $-\Gd u+u^{-q}=0$ with $q>0$
Origine | Fichiers produits par l'(les) auteur(s) |
---|