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Abstract

We obtain necessary conditions expressed in terms of Wiener type tests involving Hausdorff
or Bessel capacities for the existence of large solutions to equations (1) −∆pu+eu−1 = 0 or (2)
−∆pu + uq = 0 in a bouded domain Ω when q > p− 1 > 0. We apply our results to equations

(3) −∆pu+ |∇u|q + bup−1 = 0, (4) −∆u+ |∇u|2 + uq = 0 and −∆u+ u−q = 0 with q > 0.
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1 Introduction

Let Ω be a bounded domain in R
N (N ≥ 2) and 1 < p ≤ N . We consider the question of

existence of solutions to the problem

−∆pu+ g(u) = 0 in Ω
lim

ρ(x)→0
u(x) = ∞ (1.1)

where ∆pu = div(|∇u|
p−2

∇u), ρ(x) = dist (x, ∂Ω) and g is a continuous nondecreasing function

vanishing at 0; most often g(u) is either eu− 1 or |u|
q−1

u with q > p− 1. A solution to problem
(1.1) is called a large solution. When the domain is regular in the sense that the Dirichlet
problem with continuous boundary data φ

−∆pu+ g(u) = 0 in Ω
u = φ in ∂Ω

(1.2)

∗E-mail address: Hung.Nguyen-Quoc@lmpt.univ-tours.fr
†E-mail address: Laurent.Veron@lmpt.univ-tours.fr
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admits a solution, it is clear that problem (1.1) admits a solution. It is known that a necessary
and sufficient condition for such a result is the so called Wiener criterion (for p = 2 see [17]),
for p 6= 2 see [10], [6])

∫ 1

0

(

C1,p(Bt(x) ∩ Ωc)

tN−p

)
1

p−1 dt

t
= ∞ ∀x ∈ ∂Ω, (1.3)

where C1,p denotes the capacity associated to the space W 1,p(RN ): the existence of a large
solution is guaranted for a large class of nondecreasing nonlinearities g satisfying the Vazquez
condition [14]

∫ ∞

a

dt

G
1
p (t)

< ∞ G(t) =

∫ t

0

g(s)ds, (1.4)

a variant of the Keller-Osserman estimate [7], [12], which is the above relation when p = 2. If
for R > diam(Ω) there exists a function v which satisfies

−∆pv + g(v) = 0 in BR \ {0}
v = 0 on ∂BR

lim
x→0

v(x) = ∞,
(1.5)

then it is easy to see that the maximal solution of

−∆pu+ g(u) = 0 in Ω (1.6)

is a large solution, without any assumption on the regularity of ∂Ω, provided (1.4) is satisfied.
However the existence of a (radial) solution to problem (1.5) needs the fact that equation (1.6)
admits solutions with isolated singularities, which is usually not true if the growth of g is too
strong since Vazquez and Véron proved [15] that if

lim inf |r|→∞ |r|
−N(p−1)

N−p sign(r)g(r) > 0 (1.7)

isolated singularities of solutions of (1.6) are removable. Conversely, if p − 1 < q < N(p−1)
N−p ,

Friedman and Véron [4] characterize the behavior of positive singular solutions to

−∆pu+ uq = 0 (1.8)

with an isolated singularities. In 2003, Labutin [8] proved that a necessary and sufficient condi-
tion in order the following problem be solvable

−∆u+ |u|
q−1

u = 0 in Ω
lim

ρ(x)→0
u(x) = ∞ (1.9)

is that
∫ 1

0

C2,q′ (Bt(x) ∩ Ωc)

tN−2

dt

t
= ∞ ∀x ∈ ∂Ω, (1.10)

where C2,q′ is the capacity associated to the Sobolev space W 2,q′(RN ) and q′ = q/(q−1). Notice
that this condition is always satisfied if q is subcritical, i.e. q < N/(N − 2). Concerning the
exponential case of problem (1.1) nothing is known, even in the case p = 2, besides the simple
cases already mentionned.
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In this article we give sufficient conditions, expressed in terms of Wiener tests, in order
problem (1.1) be solvable in the two cases g(u) = eu − 1 and g(u) = |u|q−1 u, q > p − 1. For

1 < p < N , we denote by HN−p
1 (E) the Hausdorff capacity of a set E defined by

HN−p
1 (E) = inf







∑

j

hN−p(Bj) : E ⊂
⋃

Bj , diam(Bj) ≤ 1







(1.11)

where the Bj are balls and hN−p(Br) = cNrN−p. Our main result concerning the exponential
case is the following

Theorem 1. Let N ≥ 2 and 1 < p < N . If

∫ 1

0

(

HN−p
1 (Ωc ∩Br(x))

rN−p

)
1

p−1
dr

r
= +∞ ∀x ∈ ∂Ω, (1.12)

then there exists u ∈ C1
loc(Ω) satisfying

−∆pu+ eu − 1 = 0 in Ω
lim

ρ(x)→0
u(x) = ∞ (1.13)

As a consequence we obtained a sufficient condition for the existence of a large solution in
the power case expressed in terms of some Cs,r Bessel capacity in R

N associated to the Besov
space Bs,r(RN ).

Theorem 2. Let N ≥ 2, 1 < p < N and q1 > N(p−1)
N−p . If

1
∫

0

(

Cp,
q1

q1−p+1
(Ωc ∩Br(x))

rN−p

)
1

p−1
dr

r
= +∞ ∀x ∈ ∂Ω, (1.14)

then, for any p− 1 < q < pq1
N , there exists u ∈ C1

loc(Ω) satisfying

−∆pu+ uq = 0 in Ω
lim

ρ(x)→0
u(x) = ∞ (1.15)

In view of Labutin’s theorem this last result is not optimal in the case p = 2, since the
involved capacity is C2,q′1

with q′1 and thus there exists a solution to

−∆pu+ uq1 = 0 in Ω
lim

ρ(x)→0
u(x) = ∞ (1.16)

with q1 > q.

At end we apply the previous theorems to quasilinear viscous Hamilton-Jacobi equations.
We prove that if p − 1 < q < p, b < b∗ for some b∗ > 0 depending on p, q,Ω, and (1.12) holds,
there exists a solution to

−∆pu+ |∇u|q + bup−1 = 0 in Ω
lim

ρ(x)→0
u(x) = ∞ (1.17)
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Conversely, we prove that if for some q > 1, there exists a solution to

−∆u+ |∇u|2 + |u|q−1u = 0 in Ω
lim

ρ(x)→0
u(x) = ∞, (1.18)

then necessarily
1
∫

0

C2,s (Ω
c ∩Br(x))

rN−2

dr

r
= +∞ ∀x ∈ ∂Ω, (1.19)

for all s > 1. This condition holds also if for some p > 0 there exists u ∈ C(Ω), u > 0 in Ω
satisfying

−∆u+ u−p = 0 in Ω
u = 0 on ∂Ω.

(1.20)

2 Morrey classes and Wolff potential estimates

In this section Ω is a bounded domain in R
N . We also denote by Br(x) the open ball of center

x and radius r and Br = Br(0). We also recall that a solution of (1.4) belongs to C1,α(Ω) for
some α ∈ (0, 1), and is more regular (depending on g) on the set {x ∈ Ω : |∇u(x)| 6= 0}.

Definition 2.1 1- A function f ∈ L1(Ω) belongs to the Morrey space Ms(Ω), 1 ≤ s ≤ ∞, if
there is a constant K such that

∫

Ω∩Br(x)

|f |dy ≤ Kr
N
s′ ∀r > 0, ∀x ∈ R

N (2.1)

The norm is defined as the smallest constant K that satisfies this inequality; it is denoted by
||f ||Ms(Ω).

2- A function f ∈ L1(Ω) belongs to the weak Ls-space M s(Ω), 1 ≤ s ≤ ∞, if there is a constant
K such that

∫

E

|f |dy ≤ K|E|
1
s′ ∀E ⊂ Ω, EBorel. (2.2)

The quasi-norm is defined as the smallest constant K that satisfies this inequality; it is denoted
by ||f ||Ms(Ω)

Clearly Lp(Ω) ⊂ Mp(Ω) ⊂ Mp(Ω).

Definition 2.2 Let R ∈ (0,∞] and µ ∈ M+(Ω), the set of positive Radon measures in Ω. If
α > 0 and 1 < p < α−1N , we define the (R-truncated) Wolff potential of µ by

WR
p [µ](x) =

∫ R

0

(

µ(Bt(x)

tN−p

)
1

p−1 dt

t
∀x ∈ R

N , (2.3)

and, for 1 < p < N , the (R-truncated) fractional maximal potential of µ by

Mp,R[µ](x) = sup
0<t<R

µ(Bt(x))

tN−p
∀x ∈ R

N , (2.4)

where the measure is extended by 0 in Ωc.
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For k ≥ 0, we set Tk(u) = sign(u)min{k, |u|}.

Definition 2.3 Assume f ∈ L1
loc(Ω). We say that a Borel function u defined in Ω is a renor-

malized supersolution of
−∆pu+ f = 0 in Ω (2.5)

if for any k > 0, Tk(u) ∈ W 1,p
loc (Ω), |∇u|

p−1
∈ L1

loc(Ω) and there holds

∫

Ω

(|∇Tk(u)|
p−2∇Tk(u)∇ϕ+ fϕ)dx ≥ 0 (resp. ≤ 0) (2.6)

for all ϕ ∈ W 1,p(Ω) with compact support in Ω and such that 0 ≤ ϕ ≤ k − Tk(u), and if
−∆pu+ f := µ is a positive (resp. negative) distribution in Ω.

The following result is proved in [11, Theorem 4.35].

Theorem 2.4 Let Ω be an open bounded domain in R
N . If f ∈ M

N
p−ǫ (Ω) for some ǫ ∈ (0, p),

u is a nonnegative supersolution of (2.5) and set µ := −∆pu+ f . Then there holds

u(x) + ||f ||
1

p−1

M
N

p−ε (Ω)
≥ c1W

r
4
1,p[µ](x) ∀x ∈ Ω s.t. Br(x) ⊂ Ω, (2.7)

for some c1 depending only on N, p, ε, diam(Ω).

Concerning renormalized solutions (see [3] for the definition) of

−∆pu = f + µ in Ω (2.8)

where f ∈ L1
loc(Ω) and µ is a Radon measure, we have

Corollary 2.5 Let f ∈ M
N

p−ǫ (Ω) and µ ∈ M
b
+(Ω), the set of positive and bounded Radon

measures in Ω. If u is a nonnegative renormalized solution to (2.8), then there exists a positive
constant c2 depending only on N, p, ε, diam(Ω) such that

u(x) + ||f ||
1

p−1

M
N

p−ε (Ω)
≥ c2W

d(x,∂Ω)
4

1,p [µ](x) ∀x ∈ Ω. (2.9)

Definition 2.6 For 1 ≤ s, q < ∞, let Ls,q(Ω) denote the Lorentz space endowed with the norm

‖f‖Ls,q =

(∫ ∞

0

t
q
s (f∗∗(t))q

dt

t

)
1
q

(2.10)

where

f∗∗(t) =
1

t

∫ t

0

f∗(t)dt

with f∗(t) = inf{s > 0 : |{x ∈ Ω : |f(x)| > s}| ≤ t}. The dual space of Ls,q(Ω) is the space
L−s,q′(Ω) and it is naturally endowed with the dual norm.

The following result is proved in [2].
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Theorem 2.7 Let f ∈ M
N

p−ǫ (Ω) and µ ∈ M
b
+(Ω). Assume that u is a nonnegative renormalized

solution to equation (2.13). If µ ∈ L−p, q
p−1 for some q > p− 1, then u ∈ Lq(Ω) and

||u||Lq(Ω) ≤ C

(

||µ||
L

−p,
q

p−1 (RN )
+ ||f ||

1
p−1

M
N

p−ε (Ω)

)

(2.11)

for some a positive constant C depending only on N, p, q, ε, diam(Ω).
Conversely, if u ∈ Lq(Ω), then for any compact set K ⊂ Ω, there exists a positive constant CK

depending only on N, p, q, ε, diam(Ω) and dist(K, ∂Ω) such that χKµ ∈ L−p, q
p−1 (RN ) and

||χKµ||
L

−p,
q

p−1 (RN )
≤ CK

(

||u||Lq(Ω) + ||f ||
1

p−1

M
N

p−ε (Ω)

)

. (2.12)

In particular, for any Borel set E ⊂ Ω,

Cp, q
q+1−p

(E) = 0 =⇒ µ(E) = 0. (2.13)

We recall [2, Theorem 3.8].

Theorem 2.8 There exists a positive constant c1 such that if u is a renormalized solution to
−∆pu = µ in Ω and u = 0 on ∂Ω, then for any x ∈ Ω

|u(x)| ≤ c1W
2diam(Ω)
1,p [µ](x).

The next statement is proved in [2, Theorem 2.4], and in [5] for a variant.

Theorem 2.9 There exist positive constants c2, c3 such that

∫

2B

exp(c2W
R
1,p[µB]) ≤ c3r

N ,

for all B = Br(x0) ⊂ R
N , 2B = B2r(x0), R > 0 such that ||Mp,R[µ]||L∞(RN ) ≤ 1.

3 Estimates from below

If G is any domain in R
N with a compact boundary and g is nondecreasing, g(0) = g−1(0) = 0

and satisfies (1.7), there always exists a maximal solution to (1.4) in G. It is constructed as the
limit, when n → ∞, of the solutions of

−∆pun + g(un) = 0 in Gn := {x ∈ R
N : dist (x,Gc) > 1

n}
lim

ρn(x)→0
un(x) = ∞

lim
|x|→∞

un(x) = 0 if G is unbounded,
(3.1)

where ρn(x) := dist (x, ∂Ωn). Our main estimates are the following.

Theorem 3.1 Let K ⊂ B1/4\{0} be a compact set and let Uj ∈ C1
loc(K

c), j = 1, 2, be the
maximal solutions of

−∆pu+ eu − 1 = 0 in Kc (3.2)
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for U1 and
−∆pu+ uq = 0 in Kc (3.3)

for U2, where p− 1 < q < pq1
N . Then there exist constants Ck, k = 1, 2, 3, 4, depending on N , p

and q such that

U1(0) ≥ −C1 + C2

∫ 1

0

(

HN−p
1 (K ∩Br)

rN−p

)
1

p−1
dr

r
(3.4)

and

U2(0) ≥ −C3 + C4

∫ 1

0

(

Cp,
q1

q1−p+1
(K ∩Br)

rN−p

)
1

p−1
dr

r
. (3.5)

Proof. Step 1. For j ∈ Z define rj = 2−j and Sj = {x : rj ≤ |x| ≤ rj−1}, Bj = Brj . Fix a
positive integer J such that K ⊂ {x : rJ ≤ |x| < 1/8}. Consider the sets K ∩Sj for j = 3, ..., J .
By [13, Theorem 3.4.27], there exists µj ∈ M

+(RN ) such that supp(µj) ⊂ K ∩ Sj ,

c−1HN−p
1 (K ∩ Sj) ≤ µj(R

N ) ≤ cHN−p
1 (K ∩ Sj) ∀j

and
‖Mp,1[µj ]‖L∞(RN ) = 1.

Now, we will show that for ε small enough, there holds,

∫

B1

exp

(

2N

p
c1W

1
1,p

[

J
∑

k=3

εµk

]

(x)

)

dx ≤ C, (3.6)

where c1 is the constant in Theorem 2.8, and C does not depend on J .
Indeed, we have

A :=

∫

B1

exp

(

2N

p
c1W

1
1,p

[

J
∑

k=3

εµk

]

(x)

)

dx =
∞
∑

j=1

∫

Sj

exp

(

2N

p
c1ε

1
p−1W1

1,p

[

J
∑

k=3

µk

]

(x)

)

dx.

Since

W1
1,p

[

J
∑

k=3

µk

]

(x) ≤ max{1, 5
2−p
p−1 }



W1
1,p





∑

k≥j+2

µk



 (x) +W1
1,p





∑

k≤j−2

µk



 (x) +

j+1
∑

k=max{j−1,3}

W1
1,p[µk](x)





and

exp(

5
∑

i=1

ai) ≤

5
∑

i=1

exp(5ai) ∀ai.

Thus,

A ≤
∞
∑

j=1

∫

Sj

exp

(

5max{1, 5
2−p
p−1 } 2N

p c1ε
1

p−1W1
1,p

[

∑

k≥j+2

µk

]

(x)

)

dx

+
∞
∑

j=1

∫

Sj

exp

(

5max{1, 5
2−p
p−1 } 2N

p c1ε
1

p−1W1
1,p

[

∑

k≤j−2

µk

]

(x)

)

dx

+
∞
∑

j=1

j+1
∑

k=max(j−1,3)

∫

Sj

exp
(

5max{1, 5
2−p
p−1 } 2N

p c1ε
1

p−1W1
1,p[µk](x)

)

dx

:= A1 +A2 +A3.
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Estimate of A3: We apply Theorem 2.9 for µ = µk and B = Bk−1,

∫

2Bk−1

exp

(

5max{1, 5
2−p
p−1 }

2N

p
c1ε

1
p−1W1

1,p[µk](x)

)

dx ≤ c3r
N
k

with 5max{1, 5
2−p
p−1 } 2N

p Kε
1

p−1 ∈ (0, c2]. In particular,

∫

Sj

exp
(

5max{1, 5
2−p
p−1 }Kε

1
p−1W1

1,p[µk](x)
)

dx ≤ 4c3r
N
k k = j − 1, j, j + 1.

Which implies

A3 ≤ c4

+∞
∑

j=1

4c3r
N
j = c5 < ∞. (3.7)

Estimate of A1: Since

∑

k≥j+2

µk (Bt(x)) = 0 ∀x ∈ Sj , t ∈ (0, rj+1),

thus,

A1 =
∞
∑

j=1

∫

Sj

exp









5max{1, 5
2−p
p−1 }

2N

p
c1ε

1
p−1

1
∫

rj+1







∑

k≥j+2

µk(Bt(x))

tN−p







1
p−1

dt

t









dx

≤

∞
∑

j=1

∫

Sj

exp






5max{1, 5

2−p
p−1 }

2N

p
c1ε

1
p−1

p− 1

N − p





∑

k≥j+2

µk(Sk)





1
p−1

r
−N−p

p−1

j+1






dx.

Note that µk(Sk) ≤ µk(Brk−1
(0)) ≤ rN−p

k−1 , which leads to





∑

k≥j+2

µk(Sk)





1
p−1

r
−N−p

p−1

j+1 ≤





∑

k≥j+2

rN−p
k−1





1
p−1

r
−N−p

p−1

j+1 =





∑

k≥0

rN−p
k





1
p−1

=

(

1

1− 2−(N−p)

)
1

p−1

.

Therefore

A1 ≤

∞
∑

j=1

∫

Sj

exp

(

5max{1, 5
2−p
p−1 }

2N

p
c1ε

1
p−1

p− 1

N − p

(

1

1− 2−(N−p)

)
1

p−1

)

dx

= exp

(

5max{1, 5
2−p
p−1 } 2N

p c1ε
1

p−1 p−1
N−p

(

1
1−2−(N−p)

)
1

p−1

)

|B1| = c6

Estimate of A2: for x ∈ Sj ,

W1
1,p





∑

k≤j−2

µk



 (x) =

1
∫

rj−1







∑

k≤j−2

µk(Bt(x))

tN−p







1
p−1

dt

t
=

j−1
∑

i=1

ri−1
∫

ri







∑

k≤j−2

µk(Bt(x))

tN−p







1
p−1

dt

t
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Since ri < t < ri−1,
∑

k≤i−2

µk(Bt(x)) = 0, ∀i = 1, ...., j − 1, thus

W1
1,p





∑

k≤j−2

µk



 (x) =

j−1
∑

i=1

ri−1
∫

ri







∑

i−1≤k≤j−2

µk(Bt(x))

tN−p







1
p−1

dt

t

≤

j−1
∑

i=1

ri−1
∫

ri







∑

i−1≤k≤j−2

µk(Sk)

tN−p







1
p−1

dt

t

≤

j−1
∑

i=1





∑

i−1≤k≤j−2

µk(Sk)





1
p−1

p− 1

N − p
r
−N−p

p−1

i

≤

j−1
∑

i=1





∑

i−1≤k≤j−2

rN−p
k−1





1
p−1

p− 1

N − p
r
−N−p

p−1

i

≤
p− 1

N − p

j−1
∑

i=1





∑

i−1≤k≤j−2

rN−p
k−1−i





1
p−1

≤
p− 1

N − p

j−1
∑

i=1





∑

k≥i−1

rN−p
k−1−i





1
p−1

=
p− 1

N − p

(

4N−p

1− 2−(N−p)

)
1

p−1

(j − 1)

≤
p− 1

N − p

(

4N−p

1− 2−(N−p)

)
1

p−1

j.

Therefore,

A2 ≤

∞
∑

j=1

∫

Sj

exp

(

5max{1, 5
2−p
p−1 }

2N

p
c1ε

1
p−1

p− 1

N − p

(

4N−p

1− 2−(N−p)

)

1
p−1

j

)

dx

=

∞
∑

j=1

c7r
N
j exp

(

5max{1, 5
2−p
p−1 }

2N

p
c1ε

1
p−1

p− 1

N − p

(

4N−p

1− 2−(N−p)

)

1
p−1

j

)

=

∞
∑

j=1

c7 exp

((

5max{1, 5
2−p
p−1 }

2N

p
c1ε

1
p−1

p− 1

N − p

(

4N−p

1− 2−(N−p)

)

1
p−1

−N log(2)

)

j

)

= c8 for ε small enough.

Consequently, A ≤ C := c6 + c8 + c5 for ε small enough. This implies

∥

∥

∥

∥

∥

exp

(

c1W
1
1,p

[

J
∑

k=3

εµk

])∥

∥

∥

∥

∥

M
2N
p (B1(0))

≤ c10

(

∫

B1(0)

exp

(

2N

p
c1W

1
1,p

[

J
∑

k=3

εµk

]

(x)

)

dx

)

p
2N

≤ c11

(3.8)
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where the constant c11 does not depend on J . Set B = B 1
4
. For ε small enough, it follows

from [2], 3.6 and Theorem 2.8, that there exists a renormalized solution u to equation

−∆pu+ eu − 1 = ε
∑J

j=3 µj in B

u = 0 in ∂B.
(3.9)

By standard regularity theory, u ∈ C1,α
loc (B\K). From Corollary 2.5 and estimate (3.8), we have

u(0) ≥ −c12 + c13W
1
4
1,p





J
∑

j=3

µj



 (0).

Therefore

u(0) ≥ −c12 + c13W
1
4
1,p





J
∑

j=3

µj



 (0) = −c12 + c13

∞
∑

i=2

ri
∫

ri+1











J
∑

j=3

µj(Bt(0))

tN−p











1
p−1

dt

t

≥ −c12 + c13

J−2
∑

i=2

ri
∫

ri+1

(

µi+2(Bt(0))

tN−p

)
1

p−1 dt

t
= −c12 + c13

J−2
∑

i=2

ri
∫

ri+1

(

µi+2(Si+2)

tN−p

)
1

p−1 dt

t

≥ −c12 + c14

J−2
∑

i=2

(µi+2(Si+2))
1

p−1 r
−N−p

p−1

i = −c12 + c14

J−2
∑

i=2

(µi+2(Si+2))
1

p−1 r
−N−p

p−1

i

≥ −c12 + c15

J−2
∑

i=2

(

HN−p
1 (K ∩ Si+2)

)
1

p−1

r
−N−p

p−1

i = −c12 + c16

∞
∑

i=4

(

HN−p
1 (K ∩ Si)

)
1

p−1

r
−N−p

p−1

i .

Note that
(

HN−p
1 (K ∩ Si)

)
1

p−1

≥ 1

max(1,2
2−p
p−1 )

(

HN−p
1 (K ∩Bi−1)

)
1

p−1

−
(

HN−p
1 (K ∩Bi)

)
1

p−1

∀i.

Therefore,

u(0) ≥ −c12 + c16

∞
∑

i=4

(

1

max(1,2
2−p
p−1 )

(

HN−p
1 (K ∩Bi−1)

)
1

p−1

−
(

HN−p
1 (K ∩Bi)

)
1

p−1

)

r
−N−p

p−1

i

= −c12 + c16

(

1

max(1,2
2−p
p−1 )

∞
∑

i=4

(

HN−p
1 (K ∩Bi−1)

)
1

p−1

r
−N−p

p−1

i −
∞
∑

i=4

(

HN−p
1 (K ∩Bi)

)
1

p−1

r
−N−p

p−1

i

)

= −c12 + c16

(

2
N−p
p−1

max(1,2
2−p
p−1 )

∞
∑

i=4

(

HN−p
1 (K ∩Bi−1)

)
1

p−1

r
−N−p

p−1

i−1 −

∞
∑

i=4

(

HN−p
1 (K ∩Bi)

)
1

p−1

r
−N−p

p−1

i

)

≥ −c12 + c16

(

2
N−p
p−1

max(1,2
2−p
p−1 )

− 1

) ∞
∑

i=4

(

HN−p
1 (K ∩Bi)

)
1

p−1

r
−N−p

p−1

i

≥ −c17 + c18

1
∫

0

(

HN−p
1 (K ∩Bt(0))

tN−p

)
1

p−1
dt

t
.

Since U1 is the maximal solution in Kc, u satisfies the same equation in B\K and U1 ≥ u = 0
on ∂B, it follows that U1 dominates u in B\K. Then U1(0) ≥ u(0) and we derive (3.4).
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Step 2. Fix a positive integer J such that K ⊂ {x : rJ ≤ |x| < 1/8}. Consider the sets K ∩ Sj

for j = 3, ..., J . By [13, Theorem 2.5.3], there exists µj ∈ M
+(RN ) such that

µj(K ∩ Sj) =

∫

RN

(Gp[µj ](x))
q1dx = Cp,

q1
q1−p+1

(K ∩ Sj).

We have, for any ak ≥ 0,
(

∞
∑

k=0

ak

)r

≤

∞
∑

k=0

θk,ra
r
k

where θk,r has the following expression with θ > 0,

θk,r =

{

1 if r ∈ (0, 1]
(

θ+1
θ

)r−1
(θ + 1)

kr
if r > 1.

Thus,

∫

B1(0)

(

W1
1,p

[

J
∑

k=3

µk

]

(x)

)q1

dx ≤

J
∑

k=3

θq1
k, 1

p−1

θk,q1

∫

B1(0)

(

W1
1,p[µk](x)

)q1
dx

≤

J
∑

k=3

θq1
k, 1

p−1

θk,q1

∫

R

(

W1
1,p[µk](x)

)q1
dx

≤ c19

J
∑

k=3

θq1
k, 1

p−1

θk,q1

∫

R

(Gp[µk](x))
q1dx

= c19

J
∑

k=3

θq1
k, 1

p−1

θk,q1Cp,
q1

q1−p+1
(K ∩ Sk)

≤ c20

J
∑

k=3

θq1
k, 1

p−1

θk,q12
−k

(

N−
pq1

q1−p+1

)

≤ c21 for θ small enough,

where the constant c21 does not depend on J . Hence,
∥

∥

∥

∥

∥

(

W1
1,p

[

J
∑

k=3

µk

])q∥
∥

∥

∥

∥

M
q1
q (B1(0))

≤ c22

∥

∥

∥

∥

∥

W1
1,p

[

J
∑

k=3

µk

]∥

∥

∥

∥

∥

Lq1(B1(0))

≤ c23 (3.10)

where c23 is independent of J . Take B = B 1
4
. Note that q1

q > N
p . By [2], 3.10, Corollary 2.5

and Theorem 2.8, there exists a renormalized solution u to equation

−∆pu+ uq =
∑J

j=3 µj in B

u = 0 on ∂B.
(3.11)

It belongs to C1,α
loc (B\K) and

u(0) ≥ −c24 + c25W
1
4
1,p





J
∑

j=3

µj



 (0).
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As above, we also get that

u(0) ≥ −c26 + c27

∫ 1

0

(

Cp,
q1

q1−p+1
(K ∩Br)

rN−p

)
1

p−1
dr

r
.

Since U2 is the maximal solution in U2 in B\K, it dominates the solution u in B\K, and thus
U2(0) ≥ u(0). Therefore, we get (3.5). �

4 Proof of the main results

Proof of Theorem 1. Let u be the maximal solution of

−∆pu+ eu − 1 = 0 in Ω (4.1)

Fix x0 ∈ ∂Ω. We can assume that x0 = 0. Let δ ∈ (0, 1/12). For z0 ∈ Bδ ∩ Ω. Set
K = Ωc ∩ B1/4(z0). Let U1 ∈ C1(Kc) be the maximal solution of (3.2). We have u ≥ U1

in Ω. By Theorem 3.1,

U1(z0) ≥ −C1 + C2

∫ 1

δ

(

HN−p
1 (K ∩Br(z0)

rN−2

)
1

p−1
dr

r

≥ −C1 + C2

∫ 1

δ

(

HN−p
1 (K ∩Br−|z0|)

rN−2

)
1

p−1
dr

r
(since Br−|z0| ⊂ Br(z0)))

≥ −C1 + C2

∫ 1

2δ

(

HN−p
1 (K ∩B r

2
)

rN−2

)
1

p−1
dr

r

≥ −C1 + C
′

2

∫ 1/2

δ

(

HN−p
1 (K ∩Br)

rN−2

)
1

p−1
dr

r

Therefore,

inf
Bδ∩Ω

u ≥ inf
Bδ∩Ω

U1 ≥ −C1 + C
′

2

∫ 1/2

δ

(

HN−p
1 (K ∩Br)

rN−2

)
1

p−1
dr

r
→ ∞ as δ → 0.

�

Proof of Theorem 2. Let u be the maximal solution to

−∆pu+ uq = 0 in Ω. (4.2)

Fix x0 ∈ ∂Ω. We can assume that x0 = 0. Let δ ∈ (0, 1/12). For z0 ∈ Bδ ∩ Ω. Set
K = Ωc ∩ B1/4(z0). Let U2 ∈ C1(Kc) be the maximal solution of (3.3). We have u ≥ U2

12



in Ω. By Theorem 3.1,

U1(z0) ≥ −C1 + C2

∫ 1

δ

(

Cp,
q1

q1−p+1 (K ∩Br(z0))

rN−2

)
1

p−1
dr

r

≥ −C1 + C2

∫ 1

δ

(

Cp,
q1

q1−p+1 (K ∩Br−|z0|)

rN−2

)
1

p−1
dr

r
( since Br−|z0| ⊂ Br(z0)))

≥ −C1 + C2

∫ 1

2δ

(

Cp,
q1

q1−p+1 (K ∩B r
2
)

rN−2

)
1

p−1
dr

r

≥ −C1 + C
′

2

∫ 1/2

δ

(

Cp,
q1

q1−p+1 (K ∩Br)

rN−2

)
1

p−1
dr

r
.

Therefore,

inf
Bδ∩Ω

u ≥ inf
Bδ∩Ω

U ≥ −C1 + C
′

2

∫ 1/2

δ

(

Cp,
q1

q1−p+1 (K ∩Br)

rN−2

)
1

p−1
dr

r
→ ∞ as δ → 0.

�

5 Large solutions of quasilinear Hamilton-Jacobi equations

In this section we used our previous results to give sufficient conditions for existence of solutions
to the problem

−∆pu+ |∇u|
q
+ bup−1 = 0 in Ω

lim
ρ(x)→0

u(x) = ∞, (5.1)

where b is a real number and p− 1 < q < p.

Lemma 5.1 The maximal solution of (4.1) is a large solution if and only if for any a > 0 and
b < ba := θ1a

1−p the maximal solution of

−∆pv + eav + b = 0 in Ω, (5.2)

is a large solution, where θ1 is a positive constant depending on N, p and Ω.

Proof. Since monotonicity and Vazquez’ condition (1.4) hold, it is sufficient to exhibit a large
subsolution (i.e. tending to infinity on the boundary) in order to conclude on the existence of a
large solution to (5.2).
Assume u := u1,−1 is a large solution of (4.1), then for any Λ ≥ 1

−∆pu1,−1 + eu1,−1 − Λ = 1− Λ ≤ 0 in Ω,

thus u1,−1 is a subsolution of the corresponding solution and there exists a larger solution which
is necessarily a large solution u1,−Λ of

−∆pu+ eu − Λ = 0 in Ω. (5.3)

Set min{u1,1(x) : x ∈ Ω} = θ > 0. then, for any c ∈ (0, 1) and d ≥ 0 there holds

eu1,−1 − 1 ≥ mθe
cu1,−1 ≥ mθe

cu1,−1 − d on [θ,∞)
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with mθ = e(1−c)θ − e−cθ. This implies that −∆pu1,−1 + mθe
cu1,−1 − d ≤ 0, therefore v :=

u1,−1 + c−1 lnmθ satisfies −∆pu1,−1 + ecu1,−1 − d ≤ 0. Therefore there exists a large solution
uc,−d to

−∆pu+ ecu − d = 0 in Ω. (5.4)

For α > 0 and β ∈ R, set uc,−d = αw + β, then −∆pw + α1−peβceαcw − dα1−p = 0. If we take
β = p−1

c lnα, then
−∆pw + eαcw − dα1−p = 0 in Ω. (5.5)

Since α > 0 and d ≥ 0 are arbitrary, we see that for any a > 0 and b ≥ 0, there exists a large
solution u = ua,−b to

−∆pu+ eau − b = 0 in Ω. (5.6)

We can notice that since ua,0 = a−1u1,0 + (1− p)a−1 ln a, the minimum θ := θa of ua,0 satisfies
θa = a−1θ1 + (1− p)a−1 ln a. For ǫ > 0, there holds

eaua,0 − ǫeaua,0 = (1− ǫ)eaua,0 ≥ (1 − ǫ)θ1a
1−p.

Therefore −∆pua,0 + ǫeaua,0 + (1− ǫ)θ1a
1−p ≤ 0. Thus v = ua,0 − a−1 ln ǫ satisfies

−∆pv + eav + (1− ǫ)θ1a
1−p ≤ 0

which implies that there exists a large solution to the corresponding equation. Since ǫ is arbi-
trary, it follows that for any b < ba := θ1a

1−p, there exists a large solution u = ua,b to (5.2).
�

Theorem 5.2 Assume p−1 < q < p and (1.12) holds. Then there exists b∗ = b∗(p, q,N,Ω) > 0
such that for any b ∈ (−∞, b∗), problem (5.1) admits a solution.

Proof. If (1.12) holds, for any a > 0 and b < ba, there exists a large solution u to (5.2). We set
u = α lnw with α > 0, then

−∆pw + (p− 1)
|∇w|

p

w
+ α1−pwαa+p−1 + bα1−pwp−1 = 0 in Ω. (5.7)

By Hölder’s inequality

(p− 1)
|∇w|

p

w
≥ |∇w|

q
−

p− q

p

(

q

p(p− 1)

)
q

p−q

w
q

p−q ,

therefore

−∆pw + |∇w|q + α1−pwαa+p−1 + bα1−pwp−1 −
p− q

p

(

q

p(p− 1)

)
q

p−q

w
q

p−q ≤ 0.

Since q > p− 1,
q

p− q
> p− 1. We choose α and a such that

αa+ p− 1 =
q

p− q
and α1−p =

p− q

p

(

q

p(p− 1)

)
q

p−q

.

Therefore w satisfies
−∆pw + |∇w|

q
+ bα1−pwp−1 ≤ 0.

This implies that there exists a large solution to (5.1). �
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Theorem 5.3 Let q > 1 and assume that there exists a solution to

−∆u+ |∇u|
2
+ |u|

q−1
u = 0 in Ω

lim
ρ(x)→0

u(x) = ∞. (5.8)

Then for any s > 1 there holds

∫ 1

0

C2,s(Br(x) ∩ Ωc)

rN−2

dr

r
= ∞ ∀x ∈ ∂Ω. (5.9)

Proof. For δ > 0 set Ωδ := {x ∈ Ω : ρ(x) < δ}. There exists δ0 > 0 such that u(x) > 1 in Ωδ0 .
For σ > 0 we set u = vσ, therefore

−∆v − (σ − 1)
|∇v|

2

v
+ σvσ−1 |∇v|

2
+

1

σ
v(q−1)σ+1 = 0.

Since v > 1 in Ωδ0 , it follows

−∆v +
1

σ
v(q−1)σ+1 = σ

|∇v|
2

v

(

1−
1

σ
− vσ

)

≤ 0 in Ωδ0 .

For 0 < δ < δ0 and m > inf{u
1
σ (x) : x ∈ ∂Ωδ0} we denote by vm,δ the solution of

−∆v +
1

σ
v(q−1)σ+1 = 0 in Ωδ,δ0 := {x ∈ Ω : δ < ρ(x) < δ0}

v = m in ∂Ωδ0

lim
dist (x,∂Ωδ)→0

v(x) = ∞.

(5.10)

Then vδ ≥ u
1
s and vδ′ < vδ if 0 < δ′ < δ. Thus vm = limδ→0 vm,δ satisfies

−∆v +
1

σ
v(q−1)σ+1 = 0 in Ωδ0

v = m in ∂Ωδ0

lim
ρ(x))→0

v(x) = ∞.

(5.11)

Notice that, since ∂Ωδ0 is Lipschitz, the boundary data is preserved in the approximation process.
Letting m → ∞ and using the monotonicity of {vm}, it implies that that there exists a large
solution to

−∆v +
1

σ
v(q−1)σ+1 = 0 in Ωδ0 .

By Labutin’s result it implies in particular (5.9) with s =
(q − 1)σ + 1

(q − 1)σ
and s > 1 is arbitrary.

�

Remark. If we set v = eu in (5.8), then v satisfies

−∆v + e(q+1)v = |∇v|
2
(1− ev) in Ω. (5.12)

From this, we can construct a large solution of

−∆v + e(q+1)v = 0 in Ωδ0 \ Ωδ. (5.13)
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It would be interesting to see what Wiener type criterion the existence a such a large solution
implies. We conjecture that this condition is

∫ 1

0

HN−2
1 (Br(x) ∩ Ωc)

rN−2

dr

r
= ∞ ∀x ∈ ∂Ω. (5.14)

Theorem 5.4 Assume that for some p > 0 there exists a function u ∈ C(Ω) satisfying

−∆u+ u−p = 0 in Ω
u = 0 on ∂Ω.

(5.15)

Then for any s > 1 (5.9) holds.

Proof. We set v = e−v, then v is a large solution of

−∆v + |∇v|
2
+ e(p+1)v = 0 in Ω (5.16)

and we conclude using the preceding theorem (and the remark hereafter). �
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[6] T. Kilpelainen, J. Malý: The Wiener test and potential estimates for quasilinear elliptic
equations, Acta Math. 172, 137-161 (1994).

[7] J. B. Keller: On solutions of ∆u = f(u), Comm. Pure Appl. Math. 10, 503-510 (1957).

[8] D. Labutin: Wiener regularity for large solutions of nonlinear equations, Ark. Mat. 41, no.
2, 307-39 (2003).
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