Conditioned random walks from Kac-Moody root systems - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2013

Conditioned random walks from Kac-Moody root systems

Résumé

Random paths are time continuous interpolations of random walks. By using Littelmann path model, we associate to each irreducible highest weight module of a Kac Moody algebra g a random path W. Under suitable hypotheses, we make explicit the probability of the event E: W never exits the Weyl chamber of g. We then give the law of the random walk defined by W conditioned by the event E and proves this law can be recovered by applying to W the generalized Pitmann transform introduced by Biane, Bougerol and O'Connell. This generalizes the main results of [10] and [16] to Kac Moody root systems and arbitrary highest weight modules. Moreover, we use here a completely new approach by exploiting the symmetry of our construction under the action of the Weyl group of g rather than renewal theory and Doob's theorem on Martin kernels.
Fichier principal
Vignette du fichier
KMRandomWalk1306.pdf (308.58 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00833657 , version 1 (13-06-2013)
hal-00833657 , version 2 (18-10-2013)
hal-00833657 , version 3 (22-12-2013)

Identifiants

Citer

Cédric Lecouvey, Emmanuel Lesigne, Marc Peigné. Conditioned random walks from Kac-Moody root systems. 2013. ⟨hal-00833657v1⟩
251 Consultations
189 Téléchargements

Altmetric

Partager

More