Graph-based Image Segmentation Using Weighted Color Patch - Archive ouverte HAL
Communication Dans Un Congrès Année : 2013

Graph-based Image Segmentation Using Weighted Color Patch

Résumé

Constructing a discriminative affinity graph plays an essential role in graph-based image segmentation, and feature directly influences the discriminative power of the affinity graph. In this paper, we propose a new method based on the weighted color patch to compute the weight of edges in an affinity graph. The proposed method intends to incorporate both color and neighborhood information by representing pixels with color patches. Furthermore, we assign both local and global weights adaptively for each pixel in a patch in order to alleviate the over-smooth effect of using patches. The normalized cut (NCut) algorithm is then applied on the resulting affinity graph to find partitions. We evaluate the proposed method on the Prague color texture image benchmark and the Berkeley image segmentation database. The extensive experiments show that our method is competitive compared to the other standard methods with multiple evaluation metrics.
Fichier principal
Vignette du fichier
ICIP_weightedColorPatch-hal.pdf (880.3 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00833305 , version 1 (26-07-2013)

Identifiants

  • HAL Id : hal-00833305 , version 1

Citer

Xiaofang Wang, Chao Zhu, Charles-Edmond Bichot, Simon Masnou. Graph-based Image Segmentation Using Weighted Color Patch. IEEE International Conference on Image Processing (ICIP), Sep 2013, Melbourne, Australia. pp.4064-4068. ⟨hal-00833305⟩
275 Consultations
743 Téléchargements

Partager

More