Stationary distributions for stochastic differential equations with random effects and statistical applications. - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2013

Stationary distributions for stochastic differential equations with random effects and statistical applications.

Résumé

Let $(X(t), t\ge 0)$ be defined by a stochastic differential equation including a random effect $\phi$ in the drift and diffusion coefficients. We characterize the stationary distributions of the joint process $((\phi, X(t)), t\ge 0)$ which are non unique and prove limit theorems and central limit theorems for functionals of the sample path $(X(t), t\in [ 0, T])$ as $T$ tends to infinity. This allows to build several estimators of the random variable $\phi$ which are consistent and asymptotically mixed normal with rate $\sqrt{T}$. Examples are given fulfilling the assumptions of the limit theorems. Parametric estimation of the distribution of the random effect from $N$ {\em i.i.d.} processes $(X_j(t), t\in [ 0, T]), j=1,\ldots,N$ is considered. Parametric estimators are built and proved to be $\sqrt{N}$-consistent and asymptotically Gaussian as both $N$ and $T=T(N)$ tend to infinity with $T(N)/N$ tending to infinity.
Fichier principal
Vignette du fichier
ErgodMixedEDS01_04_2013.pdf (356.15 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00807258 , version 1 (03-04-2013)
hal-00807258 , version 2 (13-01-2015)
hal-00807258 , version 3 (07-12-2015)

Identifiants

  • HAL Id : hal-00807258 , version 1

Citer

Valentine Genon-Catalot, Catherine Larédo. Stationary distributions for stochastic differential equations with random effects and statistical applications.. 2013. ⟨hal-00807258v1⟩
437 Consultations
4840 Téléchargements

Partager

More