
HAL Id: hal-00807258
https://hal.science/hal-00807258v1

Preprint submitted on 3 Apr 2013 (v1), last revised 7 Dec 2015 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stationary distributions for stochastic differential
equations with random effects and statistical

applications.
Valentine Genon-Catalot, Catherine Larédo

To cite this version:
Valentine Genon-Catalot, Catherine Larédo. Stationary distributions for stochastic differential equa-
tions with random effects and statistical applications.. 2013. �hal-00807258v1�

https://hal.science/hal-00807258v1
https://hal.archives-ouvertes.fr


Stationary distributions for stochastic di�erential

equations with random e�ects and statistical

applications.

V. Genon-Catalot1, C. Larédo2

1Laboratoire MAP5, Université Paris Descartes, U.F.R. de Mathématiques et Informatique,

CNRS UMR 8145, PRES Sorbonne Paris Cité,

45, rue des Saints-Pères, 75270 Paris Cedex 06, France.

e-mail: Valentine.Genon-Catalot@parisdescartes.fr.
2(Corresponding author) Laboratoire MIA, I.N.R.A. and LPMA, Université Denis Diderot,

CNRS-UMR 7599

Laboratoire MIA, I.N.R.A. Domaine de Vilvert, 78350, Jouy-en-Josas, France.

e-mail: catherine.laredo@jouy.inra.fr

Abstract

Let (X(t), t ≥ 0) be de�ned by a stochastic di�erential equation including a random ef-

fect φ in the drift and di�usion coe�cients. We characterize the stationary distributions

of the joint process ((φ,X(t)), t ≥ 0) which are non unique and prove limit theorems and

central limit theorems for functionals of the sample path (X(t), t ∈ [0, T ]) as T tends

to in�nity. This allows to build several estimators of the random variable φ which are

consistent and asymptotically mixed normal with rate
√
T . Examples are given ful�lling

the assumptions of the limit theorems. Parametric estimation of the distribution of the

random e�ect from N i.i.d. processes (Xj(t), t ∈ [0, T ]), j = 1, . . . , N is considered.

Parametric estimators are built and proved to be
√
N -consistent and asymptotically

Gaussian as both N and T = T (N) tend to in�nity with T (N)/N tending to in�nity.
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1 Introduction

Mixed-e�ects or random e�ects models are of common use in many �elds of applications and
especially in biomedical research. In such models, the distribution of an observation X is
given in two stages. First, there is an unobserved random variable φ (the random e�ect)
with distribution ν(dϕ) on some space Φ. Second, given that φ = ϕ, X has distribution
Pϕ,β(dx) which depends on ϕ and possibly on some other �xed parameter β. The resulting

distribution is thus a mixture Pν,β(dx) =

∫

ν(dϕ)Pϕ,β(dx). The interest of random e�ects

models is that they take into account two sources of variability. Usually, X represents the
behaviour of an individual, φ describes the individual speci�city and given that φ = ϕ, the
model describes a general evolution for all individuals with individual value ϕ (see e.g. Beal
and Sheiner, 1982, Wol�nger, 1993, Davidian and Giltinan, 1995, Pinheiro and Bates, 2000,
Kuhn and Lavielle, 2004, Nie and Yang, 2005, Nie, 2006, 2007).

In particular, in stochastic di�erential equations (SDEs) with random e�ects, X =
(X(t), t ≥ 0) is a continuous-time stochastic process with dynamics given by:

dX(t) = b(X(t), φ, β)dt+ σ(X(t), φ, β) dW (t), X(0) = η, (1)

where W is a Brownian motion, (φ, η) is a random variable independent of W . SDEs with
random e�ects have been introduced to generalize classical ordinary di�erential equations
models (Ditlevsen and de Gaetano, 2005, Overgaard et al., 2005, Donnet and Samson, 2008)
and also to model neuronal data (Picchini et al., 2010).

We focus here on one-dimensional SDEs with just random e�ects, i.e. (X(t)) is real-
valued, W is a standard Wiener process, b(x, ϕ, β) = b(x, ϕ), σ(x, ϕ, β) = σ(x, ϕ) are real-
valued functions de�ned on R × Φ and (φ, η) takes values in Φ × R.

Recently, the estimation of the unknown distribution ν(dϕ) of φ whether parametric or
nonparametric based on the observation of N i.i.d. processes (Xj(t), t ∈ [0, T ]), j = 1, . . . , N
distributed as (1) has been the subject of several contributions. Parametric estimation
is investigated in Ditlevsen and de Gaetano, 2005 for the speci�c model of mixed e�ects
Brownian motion with drift and in Donnet, S. and Samson, A. (2008). In Delattre et al.,
2012, the MLE for random e�ects SDEs is studied more generally for �xed T and N tending
to in�nity. In particular, for φ ∈ R having a Gaussian distribution with unknown mean µ
and unknown variance ω2, and with b(x, ϕ) = ϕb(x), σ(x, ϕ) = σ(x) with b(.), σ(.) known
functions, an explicit formula for the exact likelihood is obtained and a complete asymptotic
study of the exact MLE of (µ, ω2) is given. Approximations of the likelihood are also proposed
for general mixed SDEs in Picchini et al., 2010, Picchini and Ditlevsen, 2011.

For φ real-valued and ν(dϕ) = f(ϕ)dϕ, nonparametric estimation of the density f is
investigated in Comte et al., 2012, under the asymptotic framework that both N and T =
T (N) tend to in�nity in such a way that T (N)/N tends to in�nity. Only two speci�c models
are studied: b(x, ϕ) = ϕb(x), b(x, ϕ) = ϕ+ b(x), σ(x, ϕ) = σ(x).
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In this paper, we �rst study properties of model (1) for one process X. We prove that the
joint process ((φ,X(t)), t ≥ 0) is Markov and characterize its stationary distributions which
are non unique. Then, we prove limit theorems as T tends to in�nity, for functionals of the

form T−1

∫ T

0
g(X(s))ds and T−1

∫ T

0
h(X(s))dW (s) with g, h given functions. Afterwards,

we study the estimation of the random variable φ from the observation of one trajectory
(X(t), t ∈ [0, T ]). Our limit theorems allow us to build several kind of estimators φ̂T of
φ which are consistent and such that

√
T (φ̂T − φ) converges stably in distribution to a

mixed normal distribution. We also build estimators satisfying E|φ̃T − φ|γ ≤ CT−γ/2 under
appropriate assumptions on the model and the distribution of φ.

Finally, we assume that we observe N i.i.d. processes (Xj(t), t ∈ [0, T ], j = 1, . . . , N
such that

dXj(t) = b(Xj(t), φj)dt+ σ(Xj(t), φj) dWj(t), Xj(0) = ηj , j = 1, . . . , N, (2)

where (W1, . . . ,WN ) are N independent Wiener processes, (φ1, η1) . . . , (φN , ηN )) are N i.i.d.

random variables taking values in R
d × R, ((φ1, η1) . . . , (φN , ηN )) and (W1, . . . ,WN ) are

independent. We set a parametric assumption on the common distribution of the φj 's, i.e.

ν(dϕ) = f(θ, ϕ)dα(ϕ) with unknown parameters θ. We deduce from the previous sections
estimators of θ which are

√
N -consistent and asymptotically Gaussian under the asymptotic

framework that N and T = T (N) tend to in�nity with T (N)/N tending also to in�nity.

Section 2 is devoted to the model properties of (1) and the limit theorems. Classical ex-
amples are given and proved to ful�ll the assumptions of the theorems. In Section 3, we focus
on the estimation of the random e�ect φ. In Section 4, we consider the estimation of a mul-
tidimensional random e�ect φ = (φ1, . . . , φd)′ ∈ R

d when b(x, ϕ) =
∑d

j=1 ϕ
jbj(x), σ(x, ϕ) =

σ(x). In Section 5, we consider the parametric estimation of the distribution of the random
e�ects from N i.i.d. processes (Xj(t), t ∈ [0, T ], j = 1, . . . , N). Section 6 contains some
concluding remarks. Proofs are gathered in Section 7.

2 Model properties.

Consider a real valued stochastic process (X(t), t ≥ 0), with dynamics ruled by (1). The
Wiener process W and the r.v. (φ, η) are de�ned on a common probability space (Ω,F ,P)
endowed with a �ltration (Ft, t ≥ 0) satisfying the usual conditions. The couple (φ, η) is
assumed to be F0-measurable and W is a (Ft, t ≥ 0)-Brownian motion. We introduce below
assumptions ensuring that the process (1) is well de�ned.
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2.1 Existence and uniqueness of strong solutions

It is convenient to look at (1) as a two dimensional process:

dφ(t) = 0, φ(0) = φ,

dX(t) = b(X(t), φ(t))dt+ σ(X(t), φ(t)) dW (t), X(0) = η.

(H1) The real valued functions (x, ϕ) → b(x, ϕ) and (x, ϕ) → σ(x, ϕ) are continuous on
R×R

d and such that the above two-dimensional system admits a unique strong solution
adapted to the �ltration (Ft) for all initial condition (φ, η).

Under (H1), the process (φ,X(t)) is strong Markov and there exists a measurable functional
F

(ϕ, x,w.) ∈ (Rd × R × C(R+,R)) → (ϕ, F.(ϕ, x,w.)) ∈ R
d × C(R+,R) (3)

such that
(φ,X(.)) = (φ, F.(φ, η,W (.))). (4)

Standard regularity assumptions ensure the existence and uniqueness of a strong solution for
the system. For instance, this holds if either (A) or (B) below are ful�lled (see e.g. Comte
et al., 2012):

(A) The functions (x, ϕ) → b(x, ϕ) and (x, ϕ) → σ(x, ϕ) are C1 on R×R
d, and such that:

∃K > 0,∀(x, ϕ) ∈ R × R
d, |b(x, ϕ)| + |σ(x, ϕ)| ≤ K(1 + |x| + |ϕ|).

(B) The functions (x, ϕ) → b(x, ϕ) and (x, ϕ) → σ(x, ϕ) are C1 on R×R
d, and such that:

|b′x(x, ϕ)| + |σ′x(x, ϕ)| ≤ L(ϕ), |b′ϕ(x, ϕ)| + |σ′ϕ(x, ϕ)| ≤ L(ϕ)(1 + |x|),

with ϕ→ L(ϕ) continuous.

Under (H1), for all ϕ and x, the stochastic di�erential equation

dXϕ,x(t) = b(Xϕ,x(t), ϕ)dt+ σ(Xϕ,x(t), ϕ) dW (t), Xϕ,x(0) = x (5)

admits the unique strong solution process (Xϕ,x(t), t ≥ 0) = (Ft(ϕ, x,W (.)), t ≥ 0) (see
(3)-(4)). By the Markov property of the joint process (φ,X(.)), given φ = ϕ,X(0) = x, the
conditional distribution of X is identical to the distribution of Xϕ,x(.). Analogously, denote
by µϕ the conditional distribution of η given φ = ϕ, then the conditional distribution of X
given φ = ϕ is identical to the distribution of the process

dXϕ(t) = b(Xϕ(t)), ϕ)dt+ σ(Xϕ(t), ϕ)dW (t), Xϕ(0) ∼ µϕ (6)

with Xϕ(0) independent of W (see Lemma 1 below).
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2.2 Stationary distributions

We assume (H1) and introduce additional assumptions for stationary distributions.

(H2)-(i) There exists a Borel subset Φ of R
d and an interval (ℓ, r) ⊂ R such that ∀ϕ ∈ Φ,∀x ∈

(ℓ, r), σ2(x, ϕ) > 0, the scale density of (6)

sϕ(x) = exp (−2

∫ x

x0

b(u, ϕ)

σ2(u, ϕ)
du), x0 ∈ (ℓ, r)

satis�es
∫

ℓ sϕ(x)dx =
∫ r
sϕ(x)dx = +∞ and the speed density mϕ(x) of (6) satis�es

M(ϕ) :=
∫ r
ℓ mϕ(x)dx < +∞.

(H2)-(ii) The function (x, ϕ) → b(x, ϕ) is C1 on (ℓ, r) × R
d and (x, ϕ) → σ(x, ϕ) is C2 on

(ℓ, r) × R
d.

(H2)-(iii) The random variable φ takes values in Φ. We denote its distribution by ν(dϕ).

Let
πϕ(x) = 1(ℓ,r)(x)mϕ(x)/M(ϕ). (7)

This is the unique invariant density of model (6). Denote by pϕt (x, y) the transition density
of model (6). Assumptions (H1)-(H2) imply that

(x, y, ϕ) → pϕt (x, y) and (x, ϕ) → πϕ(x) (8)

are measurable. Morever, for g : (ℓ, r) → R a positive Borel function,

ϕ→ πϕ(g) :=

∫ r

ℓ
g(x)πϕ(x)dx

is measurable on Φ. The random variables πφ(g) are thus well de�ned.

Proposition 1. Assume (H1)-(H2). Then, the distribution on Φ × (ℓ, r) given by

π(dϕ, dx) = ν(dϕ) × πϕ(x) dx

is a stationary distribution for the Markov process (φ,X(t)) given by (1).

Thus, if (φ, η) has distribution π, the process (φ,X(t)) is strictly stationary with marginal
distribution π. It is worth stressing that the Markov process (φ,X(t)) may admit in�nitely
many invariant distributions. Hence, it is not ergodic. Note that the marginal distribution
of X(0) when (φ,X(0)) has distribution π is a mixture distribution with density given by:

p(x) =

∫

Φ
ν(dϕ)πϕ(x).

Example 1. Ornstein-Uhlenbeck process with random e�ect.
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1. Consider (X(t)) given by: dX(t) = −φX(t)dt+ dW (t). For φ with distribution ν(dϕ)
supported in (0,∞), the distribution on (0,∞) × R de�ned by π(dϕ, dx) = ν(dϕ) ⊗
N (0, (2ϕ)−1)(dx) is a stationary distribution for (φ,X(t)). The marginal distribution
of X has density:

p(x) =
1√
π

∫ +∞

0
ϕ1/2e−ϕx

2

dν(ϕ)

For instance, if φ is Gamma Γ(a, λ), we get:

p(x) =
λaΓ(a+ (1/2))√

πΓ(a)(λ+ x2)a+(1/2)
.

2. We can also consider the simpler case b(x, ϕ) = ϕ − x, σ(x) = 1. Here, Φ = R,
(ℓ, r) = R, πϕ = N (ϕ, 1/2). For any distribution ν(dϕ) on R, ν(dϕ) ⊗N (ϕ, 1/2)(dx)
is a stationary distribution for (φ,X(t)).

3. A model with random e�ects in the drift and di�usion coe�cient is also possible:
dX(t) = −AX(t)dt + ΣdW (t) with φ = (A,Σ) ∈ (0,∞) × (0,+∞). If (A,Σ)
has distribution ν(da, dσ), the invariant distribution of (φ,X(t) is π(da, dσ, dx) =
ν(da, dσ) ⊗N (0, σ2/(2a))(dx).

2.3 Limit theorems.

We consider the process (φ,X(t)) given by (1) where the initial variable (φ, η) has distribution
ν(dϕ) ⊗ dµϕ(x) with ν a distribution on Φ and µϕ a distribution on (ℓ, r).

Lemma 1. Given that φ = ϕ, the conditional distribution of the process (X(t)) given by (1)

where the initial variable (φ, η) has distribution ν(dϕ) ⊗ dµϕ(x) with µϕ a distribution on

(ℓ, r) is identical to the distribution of Xϕ given by

dXϕ(t) = b(Xϕ(t)), ϕ)dt+ σ(Xϕ(t), ϕ)dW (t), Xϕ(0) ∼ µϕ (9)

with Xϕ(0) independent of W .

Theorem 1 and 2 use Lemma 1 and a conditioning device to deduce properties of the
process (X(t)) from those of (Xϕ(t)).

Theorem 1. (1) Let g : (ℓ, r) → R be a Borel function such that πϕ(|g|) < +∞ for all

ϕ ∈ Φ. Then, almost surely, as T tends to in�nity,

1

T

∫ T

0
g(X(s))ds→ πφ(g)
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(2) Let g, h : (ℓ, r) → R be Borel functions such that πϕ(|g|) < +∞ and πϕ(h2) < +∞ for

all ϕ ∈ Φ. Then, as T tends to in�nity,
(

1√
T

∫ T

0
h(X(s))dW (s),

1

T

∫ T

0
g(X(s))ds, φ

)

→
(

ε (πφ(h
2))1/2, πφ(g), φ

)

in distribution, where ε is a standard Gaussian variable, independent of φ. Conse-

quently,
1√
T

∫ T

0
h(X(s))dW (s) converges stably in distribution to a mixed normal law

MN (0, πφ(h
2)).

Remark 1. • In Theorem 1, it is possible to weaken the assumptions: in point (1), if

πϕ(|g|) < +∞ for all ϕ ∈ Φ̃, a Borel subset of Φ, then,

P(
1

T

∫ T

0
g(X(s))ds→ πφ(g), φ ∈ Φ̃) = P(φ ∈ Φ̃).

• Analogously, in point (2), if πϕ(|g|) < +∞ and πϕ(h2) < +∞ for all ϕ belonging to a

subset Φ̃ of Φ, the convergence in distribution holds on the set (φ ∈ Φ̃).

Theorem 2. Let g : (ℓ, r) → R be a Borel function such that πϕ(|g|) < +∞ for all ϕ ∈ Φ.

Let

Vϕ(g) = 4M(ϕ)

∫ r

ℓ
sϕ(x)

(∫ x

ℓ
(g(u) − πϕ(g))dπϕ(u)

)2

dx, (10)

and assume that Vϕ(g) < +∞ for all ϕ ∈ Φ. Then, the following convergence in distribution

holds, as T tends to in�nity:

(
√
T (

1

T

∫ T

0
g(X(s))ds− πφ(g)), φ) → (εV

1/2
φ (g), φ).

where ε is a standard Gaussian variable, independent of φ. Thus,
√
T (

1

T

∫ T

0
g(X(s))ds −

πφ(g)) converges stably in law to the mixed normal law MN (0, Vφ(g)).

Remark 2. The same remark as Remark 1 holds. If we only have Vϕ(g) < +∞ on a subset

of Φ, the convergence in distribution in Theorem 2 only holds on this subset.

Other expressions of (10) are available and simpler. To get these, we recall some known
facts (see e.g. Genon-Catalot et al., 2000). Assume (H1)-(H2). We denote again Xϕ the
process given by

dXϕ(t) = b(Xϕ(t)), ϕ)dt+ σ(Xϕ(t), ϕ)dW (t), Xϕ(0) ∼ πϕ (11)

with Xϕ(0) independent of W . For all ϕ ∈ Φ, Xϕ is stationary and ergodic. Let Lϕ denote
its in�nitesimal generator on L2(πϕ) with domain Dϕ and range Rϕ (see (19)). We have:

Dϕ = {F ∈ L2(πϕ), F ′ absolutely continuous ,LϕF ∈ L2(πϕ),

lim F ′(x)/sϕ(x) = 0, as x ↑ r and ↓ ℓ}

6



For F ∈ Dϕ, the following formula holds:

−2 < LϕF, F >ϕ=

∫ r

ℓ
(F ′σ(., ϕ))2πϕ(x)dx,

where < ., . >ϕ denotes the scalar product of L2(πϕ). For G such that πϕG = 0, and for any
F solving LϕF = −G, we have:

−2 < LϕF, F >ϕ= 2 < G,F >ϕ= 4M(ϕ)

∫ r

ℓ
sϕ(x)

(∫ x

ℓ
G(u)πϕ(u)du

)2

dx.

The property that G ∈ Rϕ is equivalent to the fact that the above integral is �nite. Let

λ(ϕ) = inf{− < LϕF, F >ϕ
< F,F >ϕ

}, F ∈ Dϕ, πϕF = 0}.

The range Rϕ of the in�nitesimal generator Lϕ is identical to the set {G ∈ L2(πϕ), πϕG = 0}
if and only if λ(ϕ) > 0. A necessary and su�cient condition for λ(ϕ) > 0 is given in Genon-
Catalot et al., 2000.

We can now link these properties with the result of Theorem 2. Let g be such that
πϕg

2 < +∞ for all ϕ ∈ Φ. The function Gϕ = g − πϕg sati�es πϕGϕ = 0. If λ(ϕ) > 0, the
equation LϕFϕ = −Gϕ admits a solution Fϕ ∈ Dϕ. Then, we know that quantity

Vϕ(g) = −2 < LϕFϕ, Fϕ >ϕ=

∫ r

ℓ
(F

′

ϕσ(., ϕ))2πϕ(x)dx

is �nite.

Example 1 (continued). Ornstein-Uhlenbeck process with random e�ect.

1. We consider b(x, ϕ) = −ϕx, σ(x) = 1. We apply Theorem 1 to h(x) = x, g(x) = x2.
We have Φ = (0,∞), (ℓ, r) = R, πϕ = N (0, (2ϕ)−1), πϕg = (2ϕ)−1. Let ν(dϕ) be
supported in Φ. As T tends to in�nity,

1

T

∫ T

O
X2(s)ds→ (2φ)−1 a.s. and

(

1√
T

∫ T

0
X(s)dW (s),

1

T

∫ T

0
X2(s)ds, φ

)

→D
(

ε (2φ)−1/2, (2φ)−1, φ
)

(12)

where ε is a standard Gaussian independent of φ. For applying Theorem 2 to g, we
have to compute Vφ(g). The process X

ϕ corresponding to a �xed value ϕ with initial
variable having distribution πϕ = N (0, (2ϕ)−1) is strictly stationary, ergodic, ρ-mixing
with λ(ϕ) = −ϕ. Its in�nitesimal generator operating on L2(πϕ) admits a sequence

7



of eigenvalues (the sequence −nϕ, n ∈ N) and associated eigenfunctions which are
Hermite polynomials. In particular,

Fϕ(x) =
1

2ϕ
(x2 − 1

2ϕ
)

satis�es LϕFϕ = −(x2 − 1
2ϕ) = −(g(x) − πϕg). Actually, Fϕ is an eigenfunction asso-

ciated with the eigenvalue −2ϕ. We have F
′

ϕ(x) = x/ϕ, Vϕ(g) =
∫

R
(x2/ϕ2)dπϕ(x) =

1/(2ϕ3). Consequently,

√
T (

1

T

∫ T

O
X2(s))ds− 1/(2φ)) →D ε/

√

2φ3

with ε a standard Gaussian variable, independent of φ.

2. In the case b(x, ϕ) = ϕ − x, σ(x) = 1, Φ = R, (ℓ, r) = R, πϕ = N (ϕ, (1/2). Consider
g(x) = x. As T tends to in�nity,

1

T

∫ T

0
X(s)ds→ πφg = φ a.s. .

The function gϕ(x) = x− ϕ satis�es Lϕgϕ = −gϕ. Thus, Vϕ(g) = 1 and in this case,

√
T (

1

T

∫ T

0
X(s))ds− φ)) →D N (0, 1).

3. Consider the case of two random e�ects φ = (A,Σ), b(x, ϕ) = −ax, σ(x, ϕ) = σ,Φ =
(0,+∞)2, πϕ = N (0, σ2/(2a)), h(x) = x, g(x) = x2. As T tends to in�nity,

1

T

∫ T

0
X2(s)ds→ Σ2(2A)−1 a.s. and

(

1√
T

∫ T

0
X(s)dW (s),

1

T

∫ T

0
X2(s)ds, φ

)

→D
(

ε Σ(2A)−1/2,Σ2(2A)−1, φ
)

(13)

where ε is a standard Gaussian independent of φ = (A,Σ). Analogously, we can
compute Vφ(g). We �nd

Fφ(x) =
1

2A
(x2 − Σ2

2A
), Vφ(g) =

Σ4

2A3
,

and √
T (

1

T

∫ T

0
X2(s)ds− Σ2(2A)−1) →D ε Σ2(2A3)−1/2.
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3 Estimation of the random e�ect.

3.1 General drift.

We consider in this section, the estimation of the random variable φ based on the observation
of one trajectory (X(t), t ∈ [0, T ]). We assume that the random e�ect is not present in the
di�usion coe�cient, i.e. σ(x, ϕ) = σ(x), that (H1)-(H2) hold and that (φ, η) has distribution
ν(dϕ) ⊗ dµϕ(x) on Φ × (ℓ, r), where µϕ is a distribution on (ℓ, r) (possibly deterministic).
Under Assumptions (H1)-(H2), the process (18) is positive recurrent on (ℓ, r) for all ϕ ∈ Φ.
As φ takes values in Φ, P(∀s ≥ 0, σ(X(s)) > 0) = 1. Therefore, the function

LT (ψ) = exp

∫ T

0

b(X(s), ψ)

σ2(X(s))
dX(s) − (1/2)

∫ T

0

b2(X(s), ψ)

σ2(X(s))
ds

is well-de�ned for all ψ ∈ Φ. Thus, we can introduce:

φ̂T = φ̂T (X(s), s ≤ T ) = ArgsupψLT (ψ). (14)

The functional ϕ̂T = φ̂T (Xϕ,x(s), s ≤ T ) is the exact maximum likelihood of the true value
ϕ based on the observation (Xϕ,x(s), s ≤ T ). Consider the additional assumptions:

(H3) The function (x, ϕ) → b(x, ϕ) is twice continuously di�erentiable on (ℓ, r) × R
d.

(H4) The matrix I(ϕ) = (Ijk(ϕ)) with

Ijk(ϕ) =

∫

(ℓ,r)

(∂b/∂ϕj)(x, ϕ)(∂b/∂ϕk)(x, ϕ)

σ2(x)
πϕ(x)dx

is invertible for ϕ ∈ Φ.

Proposition 2. Assume that the maximum likelihood estimator ϕ̂T based on the observation

(Xϕ,x(s), s ≤ T ) with �xed (unknown) ϕ is consistent and that
√
T (ϕ̂T − ϕ) converges in

distribution to N (0, I−1(ϕ)) for all ϕ ∈ Φ. Then, φ̂T converges in probability to φ and√
T (φ̂T − φ) converges in distribution to the mixed normal law MN (0, I−1(φ)).

Standard assumptions ensuring the consistency and the asymptotic normality for the es-
timator ϕ̂T may be found e.g. in Kutoyants (2004). We do not detail these assumptions
here. Note that, in the previous reference, the convergence of moments of

√
T (ϕ̂T − ϕ) is

obtained. But, we cannot deduce the convergence of moments of
√
T (φ̂T − φ) since these

random variables are not bounded. This is why we study below models where estimators
are explicit and we can directly study their moments.
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3.2 Linear random e�ect in the drift.

In this paragraph, let us assume that b(., ϕ) = ϕb(.) with ϕ ∈ R, σ(x, ϕ) = σ(x) and for all
T > 0

∫ T

0

b2(X(s))

σ2(X(s))
ds < +∞.

To estimate the random variable φ from the observation of (X(t), t ≤ T ), we consider the
explicit formula for (14):

φ̂T =

∫ T
0

b(X(s))
σ2(X(s)))

dX(s)
∫ T
0

b2(X(s))
σ2(X(s))

ds
. (15)

We can prove directly the following result.

Proposition 3. Assume (H1)-(H2) and that πϕ(b2/σ2) < +∞ for all ϕ ∈ Φ. Then, as T

tends to in�nity, φ̂T converges a.s. to φ and

√
T (φ̂T − φ) →D ε/

√

πφ(b2/σ2)

where ε is a standard Gaussian variable independent of φ (stable convergence in distribution).

Example 1 (continued). Ornstein-Uhlenbeck process with random e�ect.

1. For b(x) = −x (b(x, ϕ) = −ϕx), σ(x) = 1 and φ supported in (0,+∞), the distribution

πϕ isN (0, 1/(2ϕ)). We have πφ(b
2) = (2φ)−1. The estimator φ̂T = −

∫ T
0 X(s)dX(s)/

∫ T
0 X2(s)ds

converges a.s. to φ and, using (12),
√
T (φ̂T − φ) converges in distibution to ε

√
2φ.

3. It is worth noting that we can consider the model with two random e�ects φ = (A,Σ)

seen above. The estimator ÂT = −
∫ T
0 X(s)dX(s)/

∫ T
0 X2(s)ds converges a.s. to A

and, by (13),
√
T (ÂT −A) converges in distibution to ε

√
2A.

3.3 Convergence of moments.

For further use, we need estimators φ̃T of the random variable φ such that E|φ̃T − φ|2γ ≤
C T−γ for some γ ≥ 1. Let us consider, under Assumptions (H1)-(H2), that the process
(X(t)) given by (1) has initial variable (φ, η) with distribution ν(dϕ)⊗dπϕ(x) with πϕ de�ned
in (7). Thus, (φ,X(t)) is Markov and strictly stationary. Given φ = ϕ, the distribution of
X is equal to the distribution of Xϕ given in (11). We �rst state a preliminary result.

Proposition 4. Assume (H1)-(H2) and that the process (X(t)) given by (1) has initial

variable (φ, η) with distribution ν(dϕ) ⊗ dπϕ(x) with πϕ de�ned in (7). Let g such that
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πϕg
2 < +∞ for all ϕ ∈ Φ. Let Fϕ satisfy −LϕFϕ = g − πϕg for all ϕ ∈ Φ (see (19)), i.e.

Fϕ(x) = F gϕ(x) = −2M(ϕ)

∫ x

ℓ
sϕ(u)

(∫ u

ℓ
(g(v) − πϕg)dv

)

du.

Let K(φ) be a non negative measurable function of φ. For γ ≥ 1, assume that

E

[

K(φ)
(

(Fφ(η))
2γ + (F

′

φ(η)σ(η, φ))2γ
)]

< +∞. (16)

Then,

E

[

K(φ)

(√
T (

1

T

∫ T

0
g(X(s))ds− πφ(g))

)2γ
]

≤ cγ

(

1

T γ
E(K(φ)(Fφ(η))

2γ)) + E(K(φ)(F
′

φ(η)σ(η, φ))2γ))

)

,

where cγ is a numerical constant.

Example 1. (continued [2.]) Ornstein-Uhlenbeck process with random e�ect.
Consider dX(t) = (φ − X(t))dt + dW (t), X(0) = η, where φ takes values in Φ = R, πϕ =
N (ϕ, 1/2). With g(x) = x, πϕg

2 = ϕ2+(1/2), πϕg = ϕ, gϕ(x) = x−ϕ satis�es Lϕgϕ = −gϕ,
i.e. F gϕ = gϕ, g

′
ϕ = 1, πϕ(gϕ)2γ = C2γ(1/2

γ) where C2γ is the moment of order 2γ of a
standard Gaussian variable. Consequently

E

(√
T (

1

T

∫ T

0
X(s)ds− φ)

)2γ

≤ cγ(T
−γC2γ(1/2

γ) + 1).

We study now the moments of the estimator φ̂T in the case of a linear e�ect in the drift
(see Section 3.2). To deal with the denominator, we use a truncated version of φ̂T (see (15))
and de�ne:

φ̃T = φ̂T 1
(

VT

T
≥ k√

T
)

where VT =

∫ T

0
h2(X(s))ds, h(x) =

b(x)

σ(x)
(17)

and k is a constant. Assuming that πϕh
4 < +∞, denote by Hϕ = F h

2

ϕ the function de�ned
in Proposition 4, i.e. solution of −LϕHϕ = h2 − πϕh

2. Now, we can state:

Proposition 5. Assume (H1)-(H2) and that the initial variable (φ, η) of (1) with b(x, ϕ) =
ϕb(x), σ(x, ϕ) = σ(x) has distribution ν(dϕ)⊗dπϕ(x). Let γ ≥ 1. Assume that for all ϕ ∈ Φ,

πϕh
4 < +∞ and

E

[

φ2γ

(πφ(h2))2γ)

]

< +∞, E

[

πφ(h
4γ)

(πφ(h2))4γ

]

< +∞,
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E(Hφ(η))
4γ+E(H ′

φ(η) σ(η, φ))4γ < +∞, E

(

(
φ2γ

(πφ(h2))2γ
)(Hφ(η))

2γ + E(H ′
φ(η) σ(η, φ))2γ)

)

.

Then,

E(φ̃T − φ)2γ ≤ C T−γ .

From the above proof, we can deduce the following corollary.

Corollary 1. Assume that E(πφh
2)−2 < +∞ and that

E

(

1

(πφ(h2))2
(Hφ(η))

2 + E(H ′
φ(η) σ(η, φ))2)

)

< +∞.

Then, the estimators φ̂T and φ̃T are asymptotically equivalent, i.e.
√
T (φ̂T − φ̃T ) = oP (1).

Example 1 (continued [1.]) .
Let us look at the conditions of Proposition 5 in the case of the Ornstein-Uhlenbeck pro-
cess dX(t) = −φX(t)dt + dW (t) where φ > 0 and πϕ = N (0, (2ϕ)−1). We have h(x) =
x, πφ(h

2) = (2φ)−1), Hφ(x) = (2φ)−1)(x2 − (2φ)−1)), thus,

(φ/πφ(h
2)) ∝ φ2, (πφ(h

4γ)/(πφ(h
2))4γ) ∝ φ2γ , E(Hφ(η))

4γ ≤ CEφ−8γ .

The other conditions bring no other constraints. To sum up, Proposition 5 holds if Eφ−8γ <
+∞ and Eφ4γ < +∞. For instance, for γ = 1, and φ with distribution Gamma G(a, λ), we
must take a > 8. If γ = 1 and φ is inverse Gamma InvG(a, λ, we must impose a > 4. If φ
has compact support [a, b] with 0 < a < b, all conditions are ful�lled.

3.4 Examples.

Up to now, we have illustrated our results on the Ornstein-Uhlenbeck model. In this section,
we consider other classical examples and show that they are covered by the above theory.

Example 2 . Bilinear model.
Let b(x, ϕ) = ϕ−x, σ(x) = x. We have Φ = (0,+∞), (ℓ, r) = (0,+∞), sϕ(x) = x2 exp 2ϕ/x.
The invariant density πϕ(x) = 4ϕ3x−4 exp (−2ϕ/x)1(0,+∞)(x) is the Inverse Gamma (3, 2ϕ)
and Φ = (0,+∞). As

∫

x πϕ(x) dx = ϕ, we have:

1

T

∫ T

0
X(s)ds→ φ a.s..

As
∫

x2 πϕ(x) dx = 2ϕ2 < +∞, gϕ(x) = x − ϕ ∈ L2(πϕ) and satis�es −Lϕgϕ = gϕ. Thus,
with g(x) = x, Vϕ(g) =

∫

x2 πϕ(x) dx = 2ϕ2. Hence,

√
T (

1

T

∫ T

0
X(s)ds− φ) →D

√
2εφ.
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The function gϕ(x) satis�es for 1 ≤ γ < 3/2, πϕ(g2γ
ϕ ) ≤ Cϕ2γ(1+Γ(3−2γ)). The assumptions

of Proposition 4 hold for 1 ≤ γ < 3/2 and Eφ2γ < +∞.
The estimator (14) is given by:

φ̂T =

∫ T
0 (dX(s)

X2(s)
+ ds

X(s))
∫ T
0

ds
X2(s)

.

As

∫ +∞

0
x−2πφ(x)dx = 3φ−2, the above estimator is consistent and

√
T (φ̂T − φ) converges

in distribution as T goes to in�nity to the mixed normal distribution MN (0, φ2/3).

Example 3 . C.I.R. model.
Let b(x, ϕ) = ϕ − x, σ(x) =

√
x, (ℓ, r) = (0,+∞). We have sϕ(x) = x−2ϕ exp 2x. The

invariant density πϕ(x) = (22ϕ/Γ(2ϕ))x2ϕ−1 exp (−2x)1(0,+∞)(x) is the Gamma (2ϕ, 2) and
Φ = [1/2,+∞). We also have

∫

x πϕ(x) dx = ϕ. The function gϕ(x) = x − ϕ satis�es

−Lϕgϕ = gϕ and Vϕ(g) = ϕ. Therefore, (1/T )
∫ T
0 X(s)ds→ φ a.s. and

√
T (

1

T

∫ T

0
X(s)ds− φ) →D ε

√

φ.

We �nd that, for 2γ ∈ N,

πϕ(g2γ
ϕ ) ≤ C(

Γ(2ϕ+ 2γ)

Γ(2ϕ)
+ ϕ2γ) ≤ C ′ϕ2γ .

The conditions of Proposition 4 are satis�ed for all integer γ ≥ 1 such that Eφ2γ < +∞.
The estimator (14) is given by:

φ̂T =

∫ T
0 (dX(s)

X(s) + ds)
∫ T
0

ds
X(s)

.

Here I(ϕ) =

∫ +∞

0
x−1πϕ(x)dx < +∞ for ϕ ∈ Φ0 = (1/2,+∞). In this case, I(ϕ) =

(ϕ − (1/2))−1. We must assume that φ takes values in Φ0. Then, the estimator φ̂T is
consistent and

√
T (φ̂T − φ) converges in distribution as T goes to in�nity to the mixed

normal distribution MN (0, φ− (1/2)).

Example 4. Hyperbolic di�usion with random e�ect.
Consider (X(t)) given by: dX(t) = φX(t)dt+

√

1 +X2(t)dW (t). For the process with �xed
ϕ, sϕ(x) = (1 + x2)−ϕ, mϕ(x) = (1 + x2)ϕ−1, condition (H2) is ful�lled for (ℓ, r) = R,
Φ = (−∞, 1/2). The constant M(ϕ) is not explicit except for negative integer values.
However, explicit formulae for some moments of πϕ are available.
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Consider the function h(x) = x/
√

1 + x2. Consider the integrals I(a) =
∫

dt/(1 + t2)a <
+∞ for a > 1/2 and J(a) =

∫

t2dt/(1 + t2)a < +∞ for a > 3/2. Using integration by parts,
we have, for a > 3/2:

J(a) =
1

2(a− 1)
I(a− 1), I(a) =

2a− 3

2(a− 1)
I(a− 1).

For the invariant density πϕ, we have M(ϕ) = I(1 − ϕ). Thus, for ϕ < 1/2,

πϕh
2 =

1

2(1 − ϕ)
.

Assume that φ has distribution supported in Φ := (−∞, 1/2). Then,

1

T

∫ T

O

X2(s)

1 +X2(s)
ds→ 1

2(1 − φ)
a.s. .

For the associated central limit theorem, we have to study the ρ-mixing property of the
process Xϕ. In this model, the spectrum of the in�nitesimal generator Lϕ is not discrete.
However, we can check the su�cient conditions for ρ-mixing (i.e. spectral gap) given in
Proposition 2.8 of Genon-Catalot et al., 2000. First, we have lim|x|→∞

√
1 + x2 mϕ(x) = 0.

We compute the function γϕ(x) = (
√

1 + x2)′ − 2ϕx/
√

1 + x2. As x → ±∞, γϕ(x) →
±(1−2ϕ). As these limits exist and have �nite inverse, the process is ρ-mixing. Consequently,
for any function Gϕ such that πϕGϕ = 0, the equation LϕFϕ = −Gϕ admits a solution
Fϕ ∈ Dϕ. For Gϕ = h2− 1

2(1−ϕ) , we thus have Vϕ(h2) < +∞ for all ϕ > 1/2. The expression

of Vϕ(h2) is not explicit.

Note that, in this model, the discrete spectrum is included in (−τ(ϕ), 0] with τ(ϕ) =
(1 − 2ϕ)2/8. We have:

√
T (

1

T

∫ T

O

X2(s)

1 +X2(s)
ds− 1

2(1 − φ)
) →D ε (Vφ(h

2)1/2.

The estimator

φ̂T =

∫ T

0

X(s)

1 +X2(s)
dX(s)/

∫ T

0

X2(s)

1 +X2(s)
ds

converges a.s. to φ and
√
T (φ̂T − φ) converges in distibution to ε

√

2(1 − φ).

4 Estimation of a multidimensional linear random e�ect in the

drift.

Let us assume that b(., ϕ) =
∑d

i=1 ϕ
jbj(.) with ϕ = (ϕj , j = 1, . . . , d) ∈ R

d, bj , σ Lipschitz.
Assume also that

∫ T

0

b2j (X(s))

σ2(X(s))
ds < +∞
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for all T > 0 and all j = 1, . . . , d. Consider the vector

UT = (

∫ T

0

b1(X(s))

σ2(X(s))
dX(s) . . .

∫ T

0

bd(X(s))

σ2(X(s))
dX(s))′

and the matrix IT = (Ik,ℓT )1≤k,ℓ≤d) with

Ik,lT =

∫ T

0

bk(X(s))bℓ(X(s))

σ2(X(s))
ds.

Consider the estimator φ̂T of φ de�ned by the equation

IT φ̂T = UT .

Assume that πϕ(bk bℓ/σ
2) < +∞ for all ϕ ∈ Φ̃ ⊂ Φ, let

I(φ) =
(

πφ(bk bℓ/σ
2)
)

.

Then,
P(IT /T → I(φ), φ ∈ Φ̃) = P(φ ∈ Φ̃).

Denote by Φ0 the subset of Φ̃ such that I(ϕ) invertible for all ϕ ∈ Φ0. On Φ0,
√
T (φ̂T − φ)

converges in distribution to the centered mixed normal distribution with covariance matrix
I(φ)−1 (MN(0, I(φ)−1)).

Example 1 (continued [3]). Ornstein-Uhlenbeck process with two random e�ects.
Consider the stochastic di�erential equation dX(t) = (−AX(t) + B)dt + dW (t). Let us
assume that φ = (A,B) has distribution ν(da, db) with support Φ = (0,∞) × R and that
given A = a,B = b, X(0) has distribution N b/a, 1/2a). We have

IT =

(

∫ T
0 X2(s)ds −

∫ T
0 X(s)ds

−
∫ T
0 X(s)ds T

)

,

UT = (−
∫ T

0
X(s)dX(s), X(T ) −X(0))′,

I(φ) =

(

1/2A B/A
B/A 1

)

,

We can compute detI(ϕ) = 1/2a− (b/a)2. The set Φ0 is therefore Φ0 = {ϕ = (a, b) ∈ Φ, a >
2b2}. The estimator P(φ̂T → φ, φ ∈ Φ0) = P(φ ∈ Φ0). On the set φ ∈ Φ0,

√
T (φ̂T − φ) is

asymptotically MN(0, I(φ)−1).
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5 Estimation of the distribution of the random e�ect from

i.i.d. trajectories.

In this section, we assume that we observe N i.i.d. sample paths (Xj(t), t ≤ T ), j = 1, . . . , N
and want to estimate the distribution of φj . In the asymptotic framework N → +∞ with
�xed T , it is possible to estimate consistently this distribution. For speci�c di�usion models
and speci�c distributions of the φj 's, explicit maximum likelihood estimators can be studied
(see e.g. Delattre et al., 2012 and the references therein). For general models, explicit
computations are not possible. Numerical results are available or theoretical and heavy
conditions have been proposed (see references given in the introduction). Here, we adopt
a di�erent point of view and consider a double asymptotic framework N → +∞ and T =
T (N) → +∞. This is the approach of Comte et al., 2012. Indeed, it allows to simplify
the problem and obtain explicit estimators with a two-step procedure. From each sample
path (Xj(t), t ∈ [0, T ]), we build an estimator φ̃j,T which is an approximation of φj for large
T . Then, the N i.i.d. estimators (φ̃j,T , j = 1, . . . , N) can be used to estimate the common
distribution of the φj 's.

In what follows, we consider a parametric model for the distribution of φj , i.e. we set
ν(dϕ) = νθ(dϕ) = f(θ, ϕ)dα(ϕ) for some dominating measure α on Φ and θ ∈ Θ ⊂ R

p. As
usual, we denote by θ0 the true value of the parameter.

5.1 Moment method.

Let F : Φ → R be a measurable function such that ∀θ ∈ Θ, EθF
2(φj) < +∞, and set

mθ(F ) =
∫

Φ F (ϕ)f(θ, ϕ)dα(ϕ).

Proposition 6. Let φ̃j,T be an estimator of φj built from the trajectory (Xj(t), t ∈ [0, T ])
satisfying, for some constant C(θ0),

Eθ0 |F (φ̃j,T ) − F (φj)| ≤
C(θ0)√
T
.

If both N and T tend to in�nity, N−1
∑N

j=1 F (φ̃j,T ) tends to mθ0(F ) in Pθ0-probability. If

moreover, T = T (N) satis�es T (N)/N → +∞ as N → +∞, then,

√
N



N−1
N
∑

j=1

F (φ̃j,T ) −mθ0(F )



→D(Pθ0
) N (0, σ2

θ0)

where σ2
θ0

= mθ0(F
2) −m2

θ0
(F ).

The proof is elementary using the assumption and the standard large law of numbers
and central limit theorem for N−1

∑N
j=1 F (φj).
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5.2 Gaussian random e�ects.

Consider a model where Φ = R, φj ∼ N (µ, ω2) and let θ = (µ, ω2).

Proposition 7. Let φ̃j,T be an estimator of φj built from the trajectory (Xj(t), t ∈ [0, T ])

satisfying, for some constant C(θ0), Eθ0(φ̃j,T − φj))
2 ≤ C(θ0)

T . Set

µ̃N,T = N−1
N
∑

j=1

φ̃j,T , ω̃2
N,T = N−1

N
∑

j=1

(φ̃j,T − µ̃N,T )2.

Then, as N,T go to in�nity, (µ̃N,T , ω̃
2
N,T ) is a consistent estimator of θ0 = (µ0, ω

2
0). If

moreover, T = T (N) tends to in�nity with T (N)/N tending to in�nity, then
√
N(µ̃N,T−µ̂N )

and
√
N(ω̃2

N,T − ω̂2
N ) tend to 0 in Pθ0-probability, where µ̂N = N−1

∑N
j=1 φj and ω̂2

N =

N−1
∑N

j=1(φj − µ̂N )2. Thus, the estimator (µ̃N,T , ω̃
2
N,T ) is asymptotically equivalent to the

exact MLE based on (φj , j = 1, . . . , N).

The proof is elementary.

Example 1 (continued [2].) Ornstein-Uhlenbeck process.
Assume that dXj(t) = (φj −Xj(t))dt+ dWj(t), Xj(0) = ηj where φj ∼ N (µ, ω2) and given

that φj = ϕ, Xj(0) ∼ N (ϕ, 1/2). Then, as seen above, φ̃j,T = T−1
∫ T
0 Xj(s)ds satis�es the

condition of the proposition. The parameter θ0 = (µ0, ω
2
0) can be estimated via (µ̃N,T , ω̃

2
N,T ).

5.3 Contrast method.

More generally, assume that φj has the true distribution f(θ0, ϕ)dα(ϕ) on Φ and set

u(θ, ϕ) = − log f(θ, ϕ) 1ϕ∈Φ, UN (θ) =
1

N

N
∑

j=1

u(θ, φ̃j,T ),

where φ̃j,T is an estimator of φj built from (Xj(t), t ≤ T ). Let

θ̃N,T = Arg infθ∈ΘUN (θ)

be an associated minimum contrast estimator. Then, by an appropriate choice of the φ̃j,T 's,
the minimum contrast estimator will be asymptotically equivalent to the exact MLE based
on the φj 's. The choice of the estimators φ̃j,T is linked with the model for (Xj(t)) and the
function u(θ, ϕ).
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6 Concluding remarks

In this paper, we provide su�cient conditions for the existence of stationary distributions
for a process (X(t)) de�ned by a SDE with a random e�ect φ. There is no unicity of the
stationary distributions.

Generally, authors are interested in estimating the unknown distribution of the random
e�ect. Here, we propose several estimators of the random variable φ itself based on function-
als of the continuous sample path (X(t), t ≤ T ). The estimators are proved to be consistent
and asymptotically mixed normal as T goes to in�nity.

In practice, only discrete time observations are available. Then, as it is standard, we can
use the one-step discretizations of integrals in formulae to obtain the estimators of φ.

To estimate the common distribution of the φj 's when N i.i.d. processes (Xj(t), t ≤
T ), j = 1, . . . , N) are observed, one may proceed as follows. From each sample path
(Xj(t), t ≤ T ) we build an estimator φ̃j,T which appears as a noisy observation of φj for
large T . We simply replace φj by φ̃j,T to obtain estimators. The method relies on a double
asymptotic framework where both N and T go to in�nity.

7 Appendix: proofs

Proof of Proposition 1

Assume that (φ,X(0)) has distribution π on Φ × (ℓ, r). Let Xϕ,x denote the process given
by

dXϕ,x(t) = b(Xϕ,x(t), ϕ)dt+ σ(Xϕ,x(t), ϕ)dW (t), Xϕ,x(0) = x. (18)

For H : R → R
+, G : R

d → R
+ two Borel functions, by the Markov property of (X(t), φ)),

we have:
E(H(X(t))G(φ)|X(0) = x, φ = ϕ) = E(H(Xϕ,x(t)))G(ϕ).

Using pϕt (x, y), the transition density of (18), we have:

E(H(Xϕ,x(t))) =

∫

(ℓ,r)
H(y)pϕt (x, y)dy.

As πϕ(x) is the invariant density of (18), we get:

∫

(ℓ,r)
πϕ(x) dx E(H(Xϕ,x(t))) =

∫

(ℓ,r)
H(y)dy

∫

(ℓ,r)
dxπϕ(x)pϕt (x, y)

=

∫

(ℓ,r)
H(y)πϕ(y)dy.

18



Therefore,

E(H(X(t))G(φ)) =
∫

Φ×(ℓ,r)
ν(dϕ)πϕ(x) dx E(H(Xϕ,x(t)))G(ϕ) =

∫

Φ×(ℓ,r)
G(ϕ)H(y)ν(dϕ)πϕ(y) dy

= E(H(X(0)G(φ)).

�

Proof of Lemma 1

We compare the �nite-dimensional distributions. For n ≥ 1, 0 ≤ t1 ≤ t2 ≤ . . . ≤ tn,
H : R

n → R
+ and k : R

d → R
+, we have,

E(k(φ)H(X(t1), . . . , X(tn))) =

∫

Φ
dν(ϕ)k(ϕ) E(H(X(t1), . . . , X(tn))|φ = ϕ)

=

∫

Φ×(ℓ,r)n+1

dν(ϕ) × dµϕ(x0)k(ϕ)H(x1, . . . , xn)
n
∏

i=1

pϕti−ti−1
(xi−1, xi)dx1 . . . , dxn.

Thus, the conditional density of (X(t1), . . . , X(tn)) given φ = ϕ is equal to:

∫

(ℓ,r)
dµϕ(x0)

n
∏

i=1

pϕti−ti−1
(xi−1, xi).

This is exactly the density of (Xϕ(t1), . . . , X
ϕ(tn)) given by (9). �

Proof of Theorem 1

Point (1). The process Xϕ de�ned in (9) satis�es the ergodic theorem for all ϕ ∈ Φ:

P(
1

T

∫ T

0
g(Xϕ(s))ds→T→+∞ πϕ(g)) = 1.

By Lemma 1,

P(
1

T

∫ T

0
g(X(s))ds→ πφ(g)|φ = ϕ) = P(

1

T

∫ T

0
g(Xϕ(s))ds→ πϕ(g)).

Thus,

P(
1

T

∫ T

0
g(X(s))ds→ πφ(g)) = 1.

Point (2). The conditional distribution of (X = F (φ, η;W ),W ) given φ = ϕ is equal
to the distribution of (Xϕ = (F (ϕ,Xϕ(0);W ),W ) with Xϕ(0) independent of W and with
distribution µϕ.

As 1
T

∫ T
0 h2(Xϕ(s))ds → πϕ(h2) a.s., the central limit theorem for stochastic integrals (see

e.g. Kutoyants, 1986) implies:

1√
T

∫ T

0
h(Xϕ(s))dW (s) →T→+∞ N (0, πϕ(h2)), in distribution.
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We also have ( 1
T

∫ T
0 g(Xϕ(s))ds → πϕ(g) a.s. as T tends to in�nity. Thus, the following

convergence in distribution holds:

(
1√
T

∫ T

0
h(Xϕ(s))dW (s),

1

T

∫ T

0
g(Xϕ(s))ds) → (N (0, πϕ(h2)), πϕ(g)).

Set

ZT =
1√
T

∫ T

0
h(X(s))dW (s), VT =

1

T

∫ T

0
g(X(s))ds.

For u, v, w ∈ R,

E(exp (iuZT + ivVT )|φ = ϕ) exp (iwϕ) → exp

(

−u
2

2
πϕ(h2) + ivπϕ(g) + iwϕ

)

.

This implies

E(exp (iuZT + ivVT + iwφ)) → E

[

exp

(

−u
2

2
πφ(h

2) + ivπφ(g) + iwφ

)]

.

For ε a random variable independent of φ with distribution N (0, 1), we have:

E

[

exp
(

iuε(πφ(h
2))1/2 + ivπφ(g) + iwφ)

)]

= E

[

exp

(

−u
2

2
πφ(h

2) + ivπφ(g) + iwφ)

)]

.

�

Proof of Theorem 2

We consider for �xed ϕ the process Xϕ given by (9) and introduce its in�nitesimal generator
Lϕ de�ned on C2((ℓ, r))-functions by:

LϕF (x) =
σ2(x, ϕ)

2
F ′′(x) + b(x, ϕ)F ′(x) =

1

2

1

mϕ

(

F ′

sϕ

)′
. (19)

By the Ito formula, for F a C2-function on (ℓ, r), we have:

F (Xϕ(T )) = F (Xϕ(0)) +

∫ T

0
LϕF (Xϕ(s))ds+

∫ T

0
F ′(Xϕ(s))σ(Xϕ(s), ϕ)dW (s).

Therefore,

− 1√
T

∫ T

0
LϕF (Xϕ(s))ds =

1√
T

∫ T

0
F ′(Xϕ(s))σ(Xϕ(s), ϕ)dW (s) +RT ,

with

RT =
1√
T

(F (Xϕ(0)) − F (Xϕ(T )).

The ergodic properties of Xϕ imply that Xϕ(T ) converges in distribution to the stationary
distribution πϕ(x)dx as T tends to in�nity. Hence, RT tends to 0 in probability. We can
conclude that, if

πϕ((F ′σ(., ϕ))2) < +∞,

20



the following convergence in distribution holds:

− 1√
T

∫ T

0
LϕF (Xϕ(s))ds→ N (0, πϕ((F ′σ(., ϕ))2).

Now, setting gϕ(x) = g(x) − πϕ(g), we search Fϕ solving LϕFϕ = −gϕ. Using (19) yields:

F
′

ϕ(x) = −2sϕ(x)

∫ x

ℓ
gϕ(u)mϕ(u)du. (20)

A simple computation shows that Vϕ(g) = πϕ((F ′σ(., ϕ))2). By the same conditioning
device, we obtain:

E(exp (iu
1√
T

∫ T

0
gφ(X(s))ds+ ivφ)) → E(exp (−u

2

2
Vφ(g) + ivφ)),

which achieves the proof. �

Proof of Proposition 2

As above, we use the conditioning device:

P(|φ̂T − φ| > h|φ = ϕ) = P(|ϕ̂T − ϕ| > h).

And, analogously for the convergence in distribution. �

Proof of Proposition 3

We have

φ̂T − φ =
MT

< M >T
,

with MT =

∫ T

0

b(X(s))

σ(X(s))
dW (s) and < M >T=

∫ T

0

b2(X(s))

σ2(X(s))
ds. First, by theorem 1,

< M >T /T converges a.s. to πφ(b
2/σ2) > 0. Hence, < M >+∞= +∞ a.s. and MT / <

M >T converges a.s. to 0. Second, (MT /
√
T ,< M >T /T ) converges in distribution to

(ε
√

πφ(b2/σ2), πφ(b
2/σ2)). This implies the result. �

Proof of Proposition 4

We start with the process Xϕ given in (11) and set Gϕ = g−πϕg. Using that −LϕFϕ = Gϕ
and the Ito formula, we get:

∫ T

0
Gϕ(Xϕ(s))ds =

∫ T

0
F

′

ϕ(Xϕ(s))σ(Xϕ(s), ϕ)dW (s) + Fϕ(Xϕ(0)) − Fϕ(Xϕ(T )).

The process Xϕ is stationary with marginal distribution πϕ. Therefore, using the Hölder
and the Burkholder-Davis-Gundy inequalitites yields:

E

(∫ T

0
Gϕ(Xϕ(s))ds

)2γ

≤ cγ

(

T γπϕ((F
′

ϕσ(., ϕ))2γ + πϕ((Fϕ)2γ)
)

.
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Now,

E(

(∫ T

0
Gφ(X(s))ds

)2γ

|φ = ϕ) = E

(∫ T

0
Gϕ(Xϕ(s))ds

)2γ

.

Noting that
EK(φ)(πφ((F

′

φσ(., φ))2γ) = EK(φ)(F
′

φ(η)σ(η, φ))2γ ,

and
EK(φ)πφ((Fφ)

2γ) = EK(φ)Fφ(η)
2γ ,

gives the result. �

Proof of Proposition 5

We have:
√
T (φ̃T − φ) = A1 +A2, with

A1 = −
√
Tφ 1

(
VT

T
< k√

T
)
, A2 =

MT /
√
T

VT /T
1
(

VT

T
≥ k√

T
)
, (21)

where MT =
∫ T
0 h(X(s))dW (s) and h(x) =

b(x)

σ(x)
. We �rst study the term A2. Note that:

E[
VT
T

|φ] =
1

T

∫ T

0
E[h2(X(s))|φ]ds,

and E[h2(X(s))|φ = ϕ] = E[h2(Xϕ(s)) = πϕ(h2). Thus,

L = πφ(h
2) = E(

VT
T

|φ) = Eh2(X(0))|φ).

We have: A2 = A′
2 +A′′

2 with

A′
2 =

MT√
T

(

1

VT /T
− 1

L

)

1
(

VT

T
≥ k√

T
)
, A′′

2 =
MT

L
√
T

1
(

VT

T
≥ k√

T
)
. (22)

Using that L is F0-measurable, < M >T= VT , the Burkholder-Davis-Gundy and the Hölder
inequalities, we get:

E(A′′
2)

2γ ≤ C2γE
V γ
T

L2γT γ

≤ C2γ E
1

L2γT

∫ T

0
h2γ(X(s))ds

= C2γE
πφ(h

2γ)

L2γ
= C2γE

πφ(h
2γ)

(πφ(h2))2γ
,

where C2γ is the constant of the B-D-G inequality. For γ = 1, we have:

E(A′′
2)

2 = E
1

L
= E

1

πφ(h2)
.
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We thus need EX < +∞ with X = πφ(h
2γ)/(πφ(h

2))2γ . We look at A′
2:

E(A′
2)

2γ ≤ 1

k2γ

(

E

(

MT

L
√
T

)4γ

E

(√
T (L− VT /T )

)4γ
)1/2

.

We have:

E

(

MT

L
√
T

)4γ

≤ C4γE
1

L4γ

(

VT
T

)2γ

≤ C4γE
πφ(h

4γ)

(πφ(h2))4γ
.

Therefore, we impose EY < +∞ with Y = πφ(h
4γ)/(πφ(h

2))4γ . As X2 ≤ Y , the condition
EY < +∞ implies EX < +∞.
Then, we apply Proposition 4 with the function Hφ = F h

2

φ :

E

(√
T (L− VT /T )

)4γ
≤ C

(

E(Hφ(η))
4γ + E(H ′

φ(η) σ(η, φ))4γ
)

.

There remains the term A1. We have A2γ
1 ≤ T γφ2γ1

(
VT

T
< k√

T
)
. Therefore, setting ℓ = πϕh

2,

we have, for all p ≥ 1,

P(
VT
T

<
k√
T
|φ = ϕ) ≤ P(|ℓ− VT

T
| > ℓ− k√

T
|φ = ϕ) 1(ℓ> 2k√

T
) + 1(ℓ≤ 2k√

T
)

≤ P(|ℓ− VT
T

| > ℓ

2
|φ = ϕ) + 1

(ℓ−1≥
√

T

2k
)

≤ (
2

ℓ
)2pE(ℓ− VT

T
)2p|φ = ϕ) + (

2k√
T

)2pℓ−2p.

Thus,

E(A2γ
1 ) ≤ T γ−pE

[

φ2γ(
2

L
)2p
(√

T (L− VT
T

)

)2p
]

+ T γ−p(2k)2p E(φ2γL−2p).

We need p ≥ γ and that the left-hand side be �nite. Taking p = γ, we apply Proposition
4 with K(φ) = (φ/L)2γ and get the result with the condition stated. Note that, for any
function F (ϕ, x), the following relation holds:

EF (φ, η) = EπφF (φ, .).

Note also that, taking p > γ yields that E(A2γ
1 ) tends to 0 as T tends to in�nity provided that

the left-hand side expectations are �nite. But this yields a strengther moment constraint. �

Proof of Corollary 1

We have
√
T (φ̂T − φ̃T ) =

√
T φ̂T 1

(
VT

T
< k√

T
)
. As φ̂T converges to φ, it is enough to prove that

√
TP(VT

T < k√
T

) tends to 0. We use the same inequality as above with p = 1 and get:

√
TP(

VT
T

<
k√
T
|φ = ϕ) ≤ 1√

T
(
2

ℓ
)2E((

√
T (ℓ− VT

T
))2|φ = ϕ) +

2k√
T
ℓ−2. (23)

We apply Proposition 4 with K(φ) = (πφh
2)−2. This ends the proof. �

23



References

[1] Comte F., Genon-Catalot V. and Samson A. (2012). Nonparametric estimation for
stochastic di�erential equations with random e�ects. Preprint MAP5 2012-35. To appear
in Stoch. Proc. and Appl..

[2] Davidian, M. and Giltinan, D.(1995). Non linear models to repeated measruement data.
Chapman and Hall.

[3] Ditlevsen, S. and De Gaetano, A. (2005). Mixed e�ects in stochastic di�erential equation
models. Statistical Journal 3, 137-153.

[4] Donnet, S. and Samson, A. (2008). Parametric inference for mixed models de�ned by
stochastic di�erential equations. ESAIM P & S 12, 196-218.

[5] Kuhn, E. and Lavielle, M. (2004). Coupling an approximation version of em with an
mcmc procedure. ESAIM P & S 8, 115-131.

[6] Kuotoyants, Yu. A. (2004). Statistical inference for ergodic di�usion processes. Springer
Series in Statistics. Springer-Verlag, London.

[7] Nie, L. (2006). Strong consistency of the MLE in generalized linear and nonlinear mixed-
e�ects models. Metrika 63, 123-143.

[8] Nie, L. (2007). Convergence rate of the MLE in generalized linear and nonlinear mixed-
e�ects models: theory and applications. Journal of Statistical Planning and Inference

137, 1787-1804.

[9] Nie, L. & Yang, M. (2005). Strong consistency of the MLE in nonlinear mixed-e�ects
models with large cluster size. Sankhya: The Indian Journal of Statistics 67, 736-763.

[10] Overgaard, R.V., Jonsson, N., Tornoe, W. and Madsen, H.(2005). Non-linear Mixed-
e�ects models with stochastic di�erential equations: implementation of an estimation
algorithm. Journal of Pharmacokinetics and Pharmacodynamics 32, 85-107.

[11] Picchini, U., De Gaetano, A. and Ditlevsen, S. (2010). Stochastic di�erential mixed-
e�ects models. Scand. J. Statist. 37, 67-90.

[12] Picchini, U. and Ditlevsen, S. (2011). Practicle estimation of high dimensional stochastic
di�erential mixed-e�ects models. Computational Statistics & Data Analysis 55, 1426-
1444.

[13] Pinheiro, J.C. and Bates, D.M. (2000). Mixed-E�ects Models in S and S-PLUS. New
York, Springer.

[14] Wol�nger, R. (1993). Laplace's approximation for nonlinear mixed models. Biometrika

80, 791-795.

24


