Spectral properties of Schrödinger operators on compact manifolds: rigidity, flows, interpolation and spectral estimates - Archive ouverte HAL
Article Dans Une Revue Comptes rendus de l'Académie des sciences. Série I, Mathématique Année : 2013

Spectral properties of Schrödinger operators on compact manifolds: rigidity, flows, interpolation and spectral estimates

Résumé

This note is devoted to optimal spectral estimates for Schrödinger operators on compact connected Riemannian manifolds without boundary. These estimates are based on the use of appropriate interpolation inequalities and on some recent rigidity results for nonlinear elliptic equations on those manifolds.
Fichier principal
Vignette du fichier
DoEsLaLo-Cras-20-7-2013.pdf (131.09 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00799252 , version 1 (12-03-2013)
hal-00799252 , version 2 (23-07-2013)

Identifiants

Citer

Jean Dolbeault, Maria J. Esteban, Ari Laptev, Michael Loss. Spectral properties of Schrödinger operators on compact manifolds: rigidity, flows, interpolation and spectral estimates. Comptes rendus de l'Académie des sciences. Série I, Mathématique, 2013, 351 (11-12), pp.437-440. ⟨hal-00799252v2⟩
242 Consultations
333 Téléchargements

Altmetric

Partager

More