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This note is devoted to optimal spectral estimates for Schrödinger operators on compact connected Riemannian manifolds without boundary. These estimates are based on the use of appropriate interpolation inequalities and on some recent rigidity results for nonlinear elliptic equations on those manifolds.

Spectral properties of Schrödinger operators on the sphere

We start by briefly reviewing some results that have been obtained in [START_REF] Dolbeault | Spectral estimates on the sphere[END_REF]. Let us define 2 * := 2 d d-2 if d ≥ 3, and 2 * := ∞ if d = 1 or 2. We denote by ∆ g the Laplace-Beltrami operator on the unit sphere S d ⊂ R d+1 . It is well known (see [START_REF] Bidaut-Véron | Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations[END_REF]) that the equation -∆ g u + λ q-2 u = u q-1 has only constant solutions as long as q ∈ (2, 2 * ) and λ ≤ d. See [START_REF] Dolbeault | Sharp Interpolation Inequalities on the Sphere: New Methods and Consequences[END_REF] for a review and various related results. Assume that the measure on S d is the one induced by Lebesgue's measure on R d+1 . This convention differs from the one of [START_REF] Dolbeault | Spectral estimates on the sphere[END_REF]. The inequality

∇u 2 L 2 (S d ) + α u 2 L 2 (S d ) ≥ µ(α) u 2 L q (S d ) ∀ u ∈ H 1 (S d ) ,
for any q ∈ (2, 2 * ) can be established by standard variational methods. According to [START_REF] Dolbeault | Spectral estimates on the sphere[END_REF], the optimal function µ : R + → R + is concave, increasing, and such that µ(α) = κ α for any α ≤ d q-2 , µ(α) < κ α for α > d q-2 where κ := |S d | 1-2/q is a normalization factor and µ(α) ∼ K q,d α 1-ϑ as α → +∞ , where ϑ := d q -2 2 q , K q,d := inf

v∈H 1 (R d )\{0} ∇v 2 L 2 (R d ) + v 2 L 2 (R d ) v 2 L q (R d )
.

(

) 1 
Let us define p = q q-2 so that p

∈ (1, +∞) if d = 1 and p ∈ ( d 2 , +∞) if d ≥ 2.
If we denote by µ → α(µ) the inverse function of α → µ(α) and by λ 1 (-∆ g -V ) the lowest (nonpositive) eigenvalue of -∆ g -V , then we have the estimate

|λ 1 (-∆ g -V )| ≤ α V L p (S d ) ∀ V ∈ L p (S d ) .
for any nonnegative V ∈ L p (S d ). Moreover we have α(µ 2) . Equality is achieved for any µ > 0 by some nonnegative V , which is constant if and only if µ ≤ d 2 (p -1). The case q ∈ (1, 2) can also be covered and we refer to [START_REF] Dolbeault | Spectral estimates on the sphere[END_REF] for further details. This case leads to estimates from below for the first eigenvalue of the operator -∆ g + W , where W is a positive potential.

) p-d/2 = L 1 p-d 2 ,d µ p (1 + o(1)) as µ → +∞ where L 1 γ,d := (K q,d ) -(γ+d/

A rigidity result on compact manifolds and a subcritical interpolation inequality

From here on we shall assume that (M, g) is a smooth compact connected Riemannian manifold of dimension d ≥ 1, without boundary, and let ∆ g be the Laplace-Beltrami operator on M. We shall denote by dv g the volume element and by R the Ricci tensor. Let λ 1 be the lowest positive eigenvalue of -∆ g .

For such manifolds a new rigidity result has been recently established in [START_REF] Dolbeault | Nonlinear flows and rigidity results on compact manifolds[END_REF], thus extending a series of results of [START_REF] Gidas | Global and local behavior of positive solutions of nonlinear elliptic equations[END_REF][START_REF] Bidaut-Véron | Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations[END_REF][START_REF] Licois | Un théorème d'annulation pour des équations elliptiques non linéaires sur des variétés riemanniennes compactes[END_REF][START_REF] Bakry | Sobolev inequalities and Myers's diameter theorem for an abstract Markov generator[END_REF][START_REF] Licois | A class of nonlinear conservative elliptic equations in cylinders[END_REF]. In order to state this result let us define the quantities:

θ = (d -1) 2 (p -1) d (d + 2) + p -1 and Q g u := H g u - g d ∆ g u - (d -1) (p -1) θ (d + 3 -p) ∇u ⊗ ∇u u - g d |∇u| 2 u
where H g u denotes Hessian of u, and

Λ ⋆ := inf u∈H 2 (M)\{0} (1 -θ) M (∆ g u) 2 dv g + θ d d-1 M Q g u 2 + R(∇u, ∇u) dv g M |∇u| 2 dv g . (2) 
It is not difficult to see that Λ ⋆ ≤ λ 1 .

Theorem 1 [5, cf. Theorem 3] Assume that Λ ⋆ is strictly positive. Then for any q ∈ (1, 2) ∪ (2, 2 * ) and any λ ∈ (0, Λ ⋆ ), the equation

-∆ g v + λ q -2 v -v q-1 = 0 has 1 as its unique positive solution in C 2 (M).
Note that in the particular case

M = S d , Λ ⋆ = λ 1 (-∆ g ) = d.
The proof relies on the nonlinear flow

u t = u 2-2 β ∆ g u + 1 + β (q -2) |∇u| 2 u , β = (d + 2) (d + 3 -p) θ (d -1) 2 (p -1) 2 -(d + 2) 2 (p -2) θ , (3) 
that can also be used to prove the following A-B type interpolation inequality (see [START_REF] Bidaut-Véron | Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations[END_REF][START_REF] Hebey | Nonlinear analysis on manifolds: Sobolev spaces and inequalities[END_REF]). Let us define

κ := vol g (M) 1-2/q . Theorem 2 [5, cf. Theorem 4] For any q ∈ (1, 2) ∪ (2, 2 * ] if d ≥ 3, q ∈ (1, 2) ∪ (2, ∞) if d = 1 or 2, the inequality ∇v 2 L 2 (M) ≥ Λ q -2 κ v 2 L q (M) -v 2 L 2 (M) ∀ v ∈ H 1 (M) . holds for some optimal Λ ∈ [Λ ⋆ , λ 1 ] if Λ ⋆ > 0. Moreover, if Λ ⋆ < λ 1 , then we have Λ ⋆ < Λ ≤ λ 1 .
The above results hold true because the flow (3) contracts

F [u] := M |∇(u β )| 2 dv g + Λ ⋆ q -2 M u 2 β dv g -κ M u β q dv g 2/q
.

The above choices for θ and β are optimal for this contraction property: see [START_REF] Dolbeault | Nonlinear flows and rigidity results on compact manifolds[END_REF].

As a consequence and exactly as in the case of the sphere, we get the first result of this note.

Proposition 3 Assume that q ∈ (2, 2 * ) if d ≥ 3, or q ∈ (2, ∞) if d = 1 or 2.
There exists a concave increasing function µ : R + → R + such that µ(α) = κ α for any α ≤ Λ q-2 , µ(α) < κ α for α > Λ q-2 and

∇u 2 L 2 (M) + α u 2 L 2 (M) ≥ µ(α) u 2 L q (M) ∀ u ∈ H 1 (M) .
The asymptotic behaviour of µ is given by µ(α) ∼ K q,d α 1-ϑ as α → +∞, with ϑ = d q-2 2 q and K q,d defined by (1).

Proof. There is an optimal function for the interpolation inequality, as can be shown by standard variational techniques. Applying Theorem 1 to the solutions of the Euler-Lagrange equations completes the proof for fixed values of α. As an infimum on u of affine functions with respect to α, the function α → µ(α) is concave. It remains to establish the properties of α for large values of µ.

Using a well chosen test function obtained by scaling an optimal function for (1) on the tangent plane to an arbitrary point of M, one can prove that lim sup α→+∞ α ϑ-1 µ(α) ≤ K q,d . Arguing by contradiction as in [4, Proposition 10], we can find a sequence (α n ) n∈N such that lim n→+∞ α n = +∞ and lim n→+∞ α ϑ-1 n µ(α n ) < K q,d , and a sequence of optimal functions (u n ) n∈N such that u n L q (S d ) = 1, which concentrates because lim sup n→+∞ α ϑ n u n 2 L 2 (S d ) < K q,d . Some classical surgery and a convexity inequality provide a contradiction by constructing a minimizing sequence for (1).

Ground state estimates for Schrödinger operators on Riemannian manifolds

In this section, we keep using the notations of Section 2 and generalize to (M, g) the spectral results established for the sphere in [START_REF] Dolbeault | Spectral estimates on the sphere[END_REF]. By inverting the function α → µ(α), we see that α : R + → R + is increasing, convex and satisfies:

α(µ) = µ κ for any µ ∈ 0, κ Λ q-2 ), α(µ) > µ κ for µ ∈ ( κ Λ q-2 , +∞). With L 1 γ,d := (K q,d ) -p , γ = p -d 2 ,
we obtain for a general manifold M the same behavior of µ → α(µ) when µ → +∞ as in the case of a sphere.

Let µ := V L p (S d ) . Since p and q 2 are Hölder conjugate exponents, it follows from Hölder's inequality that

M |∇u| 2 dv g - M V |u| 2 dv g + α(µ) M |u| 2 dv g ≥ ∇u 2 L 2 (S d ) -µ u 2 L q (S d ) + α(µ) u 2 L 2 (S d )
with equality if V p-1 and |u| 2 are proportional. The right-hand side is nonnegative according to Proposition 3. By taking the infimum of the left-hand side, we can deduce an estimate of the lowest, nonpositive eigenvalue λ 1 (-∆ g -V ) of -∆ g -V , which provides us with our first main result.

Theorem 4 Let d ≥ 1, p ∈ (1, +∞) if d = 1 and p ∈ ( d 2 , +∞) if d ≥ 2
and assume that Λ ⋆ > 0. With the above notations and definitions, for any nonnegative V ∈ L p (M), we have

|λ 1 (-∆ g -V )| ≤ α V L p (M) . (4) Moreover, we have α(µ) p-d 2 = L 1 p-d 2 ,d µ p (1 + o(1)
) as µ → +∞. The estimate (4) is optimal in the sense that for any µ ∈ (0, +∞), there exists a nonnegative function V such that µ = V L p (M) and |λ 1 (-∆ g -V )| = α(µ) . Moreover, if µ < κ Λ⋆ q-2 , α(µ) = µ κ and equality in (4) is achieved by constant potentials.

In the case of operators -∆ g + W on M, where W is a nonnegative potential, following again the same arguments as in [START_REF] Dolbeault | Spectral estimates on the sphere[END_REF] in the case of the sphere, and the rigidity result of Theorem 1, we obtain our second main result. 2-q , the spectral estimate of Theorem 5 is derived from the interpolation inequality ∇u 2 L 2 (M) + β M |u| q dv g 2/q ≥ ν(β) u 2 L 2 (M) ∀ u ∈ H 1 (M) . The concentration phenomena leading to the asymptotics for large norms of W can be studied as in Proposition 3: see [START_REF] Dolbeault | Spectral estimates on the sphere[END_REF] for the proof in the case of a sphere. We omit the details of the proof of Theorem 5.

Theorem 5 2 ) = L 1 -(p+ d 2 )

 5212 Let d ≥ 1, p ∈ (0, +∞). There exists an increasing concave function ν : R+ → R + , satisfying ν(β) = β/κ, for any β ∈ (0, p+1 2 κ Λ) if p > 1,such that for any positive potential W we haveλ 1 (-∆ + W ) ≥ ν β with β = M W -p dv g 1/p .Moreover, for large values of β, we have ν(β) -(p+ d ,d β -p (1 + o(1)) as β → +∞. With p = q