A parts-based approach for automatic 3D-shape categorization using belief functions
Résumé
Grouping 3D-objects into (semantically) meaningful categories is a challenging and important problem in 3D-mining and shape processing. Here, we present a novel approach to categorize 3D-objects. The method described in this paper, is a belief function based approach and consists of two stages. The training stage, where 3D-objects in the same category are processed and a set of representative parts is constructed, and the labeling stage, where unknown objects are categorized. The experimental results obtained on the Tosca- Sumner and the Shrec07 datasets show that the system efficiently performs in categorizing 3D-models.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...