A parts-based approach for automatic 3D-shape categorization using belief functions - Archive ouverte HAL
Article Dans Une Revue ACM Transactions on Intelligent Systems and Technology Année : 2013

A parts-based approach for automatic 3D-shape categorization using belief functions

Hedi Tabia
Mohamed Daoudi
Olivier Colot

Résumé

Grouping 3D-objects into (semantically) meaningful categories is a challenging and important problem in 3D-mining and shape processing. Here, we present a novel approach to categorize 3D-objects. The method described in this paper, is a belief function based approach and consists of two stages. The training stage, where 3D-objects in the same category are processed and a set of representative parts is constructed, and the labeling stage, where unknown objects are categorized. The experimental results obtained on the Tosca- Sumner and the Shrec07 datasets show that the system efficiently performs in categorizing 3D-models.
Fichier principal
Vignette du fichier
ACM-TIST-V4N2-TIST-2010-07-0178.R2.pdf (1.22 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00794042 , version 1 (24-02-2013)

Identifiants

  • HAL Id : hal-00794042 , version 1

Citer

Hedi Tabia, Mohamed Daoudi, Jean-Philippe Vandeborre, Olivier Colot. A parts-based approach for automatic 3D-shape categorization using belief functions. ACM Transactions on Intelligent Systems and Technology, 2013, 4 (2), pp.33:1-33:16. ⟨hal-00794042⟩
189 Consultations
253 Téléchargements

Partager

More