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A parts-based approach for automatic 3D-shape categorization using
belief functions

Hedi Tabia, University Lille 1
Mohamed Daoudi, TELECOM Lille 1
Jean-Philippe Vandeborre, TELECOM Lille 1
Olivier Colot, University Lille 1

Grouping 3D-objects into (semantically) meaningful categories is a challenging and important problem in
3D-mining and shape processing. Here, we present a novel approach to categorize 3D-objects. The method
described in this paper, is a belief function based approach and consists of two stages. The training stage,
where 3D-objects in the same category are processed and a set of representative parts is constructed, and
the labeling stage, where unknown objects are categorized. The experimental results obtained on the Tosca-
Sumner and the Shrec07 datasets show that the system efficiently performs in categorizing 3D-models.

Categories and Subject Descriptors: H.3.1 [Information Storage and Retrieval]: Content Analysis and
Indexing; I.2.10 [Artificial Intelligence]: Vision and Scene Understanding—shape; I.5.3 [Pattern Recog-
nition]: Clustering

General Terms: Multimedia data, Classification

Additional Key Words and Phrases: 3D-categorization, object recognition, belief functions

1. INTRODUCTION
The representation of objects in three dimensions (3D) has recently have recently
gained great popularity in computer vision communities and has become an integral
part of modern computer graphics applications, such as computer-aided design, game
development and more recently film production. At the same time, 3D data have be-
come widely used in diverse fields including computer vision, computational geometry,
molecular biology and medicine. The availability of low cost 3D scanners and the rapid
evolution in graphics hardware and software, has greatly facilitated 3D model acqui-
sition, creation and manipulation. The content-based analysis becomes a necessary
solution for structuring, managing and organizing 3D objects from large collections.
In this context, the aim of this paper is to propose a fully automatic framework for
3D-object categorization based on the content.

1.1. Related works
Through the state-of-the-art, we can find mainly two different families of related work.
The first family deals with the 3D-shape retrieval and the second family is concerned
by the 3D-shape classification.
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In the first family, many systems have been proposed for efficient information re-
trieval from digital collection of 3D-objects. Kazhdan et al. [Kazhdan et al. 2003]
present a general approach based on spherical harmonics for obtaining rotation in-
variant representations and show its application in the retrieval task. Antini et al.
[Antini et al. 2005] present an approach relying on curvature correlograms to perform
description and retrieval by content of 3D objects. Funkhouser et al. [Funkhouser et al.
2003] present a web-based search engine system that supports queries based on 3D
sketches, 2D sketches, 3D models, and/or text keywords. For the shape-based queries,
they have developed a matching algorithm that uses spherical harmonics to compute
discriminating similarity measures without requiring repair of model degeneracies or
alignment of orientations. Filali et al. [Filali Ansary et al. 2007] propose a method for
3D-object indexing based on 2D-views. In their paper, they present an adaptive near-
est neighbor-like algorithm to select the most relevant characteristic views from the
3D-object. A Bayesian approach is used in order to improve the retrieval rate. Assfalg
et al. [Assfalg et al. 2007] presents an adaptive spin images approach for 3D-retrieval
by content. Hilaga et al. [Hilaga et al. 2001] proposed a technique, called Topology
Matching, in which similarity between polyhedral models is calculated by comparing
Multiresolutional Reeb Graphs (MRGs) based on the Reeb graph computation of a 3D-
object. Bronstein et al. [Bronstein et al. 2008; Bronstein et al. 2009] also proposed to
consider the 3D-matching problem as a multi-criterion optimization problem trying to
simultaneously maximize the similarity and the significance of the matching parts.

Compared to the work on 3D-object retrieval where objects are compared together
in pair, 3D-classification, which consists to affect an object query to one category, is
still an open problem. Few paper such as [Huber et al. 2004; Donamukkala et al. 2005]
have addressed this issue. The method is used for classifying vehicles into a set of
pre-determined object classes. For that, parts are extracted from training objects and
grouped into part classes. A mapping from part classes to object classes is derived
from the learned part classes and known object classes. For a 3D object, after local
shape features are computed, the object class is determined using the learned part
classes and the part-to-object mapping. The decomposition in the approach is just to
divide objects into front, middle, and back parts. The method is based on a Bayesian
classifier and it is limited to specific datasets, which should respect the decomposition
constraint.

1.2. Main contributions
In this paper, we present a fully automatic framework for 3D-object categorizing based
on the belief functions. The categorization is addressed with a parts-based approach.
It consists of capturing a compact model of a given category by building a set of repre-
sentative parts. For this purpose, the objects in the same category are partitioned into
several parts. These parts are then used to construct a set of representative ones with
which objects in the same category can be described. A straightforward way to build
this set is using vector quantization techniques. Here, we use a variation of the evi-
dential k-nearest neighbors algorithm. The centroids of the resulting clusters are used
as representative parts of the category. This process is iterated for all the categories in
the training set.

The labeling of unknown 3D-objects is achieved by labeling their associated parts.
Here, we assume that each part can help to predict the category of the whole object.
More specifically, each part of the object to be labeled is considered as an item of evi-
dence supporting certain hypotheses concerning the category membership of that ob-
ject. Based on this evidence, the object parts are compared with category representa-
tive parts and basic belief masses are assigned to each category. As a result of consid-
ering each object part in turn, we obtain a set of Basic Belief Assignments (BBAs) that
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Fig. 1. The training system architecture: the input of the system is categories of 3D-objects. The output is a
set of representative-parts. The objects in this figure are selected from the animal and the human categories
in the Shrec07 dataset.

can be combined using the Dempster’s rule of combination to form a resulting BBA
synthesizing a final belief regarding the category of the whole object.

Another issue is dealt with in this paper, is when labeling an unknown 3D-object,
one can be faced with the problem of handling an unclassifiable object (reject). Here we
show that we are able to handle this issue using belief theory based data association
method. Using a specific modeling of belief functions, this is done by detecting and
managing a portion of a conflict, which originates from the non-exhaustivity of the
frame of discernment.

The remainder of the paper is organized as follows. In Section 2 the training stage is
presented. Then, in Section 3 the labeling stage is detailed. Section 4 presents experi-
mental results. Conclusions and future developments end the paper.
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(a) (b) (c)

Fig. 2. 3D-object partitioning using topology driven 3D mesh segmentation algorithm

2. A 3D-OBJECT CATEGORY MODEL
From a training set of 3D-objects, the procedure we suggest for obtaining the model of
each category is based on the assumption that 3D-objects in the same category have
the same parts. More specifically, we assume that each category can be represented by
a set of representative parts, with which shapes in that category can be described. In
this section, we focus on constructing the set of representative parts for each category.
Figure 1 presents the different steps of the training process. Given a set of J categories,
The Figure shows four main steps applied for each category: (1) object partitioning; (2)
part description; (3) part clustering; (4) representative part computation.

2.1. Object partitioning and part description
3D-partitioning, which consists to extract a set of parts that share the same character-
istics from a 3D-object, is a deeply-studied domain as the reader may realize through
a recent comprehensive survey [Shamir 2008]. In our method, we adopt a fully au-
tomatic topology driven 3D mesh segmentation algorithm [Tierny et al. 2007] where
feature boundaries and feature hierarchy are both computed in a semantic-oriented
manner. The main steps of this approach are shown in Figure 2. First, a set of feature
points is extracted from the 3D object as shown in Figure 2(a). Then the enhanced
topological skeleton of the input triangulated surface is constructed (Figure 2(b)). Fi-
nally, it is used to delimit the core of the object and to identify junction areas. This
final step results in a fine segmentation of the object (Figure 2(c)).

After the object partitioning, parts are represented by local descriptors which cap-
ture the geometry of the part. It is well known that the performance of all data clas-
sifier depends critically on the ability of the descriptors to discriminate among the
various classes. Choosing the right set of feature is a difficult problem. The descriptors
must be sufficiently rich to discriminate between different parts of shapes, and at the
same time be invariant to different transformations that a shape can undergo. There
exists several part description algorithms, and below we overview some of them.

— GD2: The GD2 is a local distributions of geodesic distances. It has been used for
shape recognition by Osada et al. [Osada et al. 2002] as a global shape distribution,
which measures Euclidean distances of random surface points.

— Gcords: Geodesic cords-based descriptors is defined as a distribution of geodesic dis-
tances from one source point to other. First, an Euclidean Cords-based descriptors
was be introduced by Paquet et al. [Paquet and Rioux 1999] for global 3D-shape
matching. We have adapted this approach to local feature descriptor.
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— HSI: Histogram of Shape Index, is defined as the histogram of shape index values,
calculated over mesh part. The shape index, first introduced by Koenderinket al.
[Koenderink and van Doorn 1992], is defined as a function of the two principal cur-
vatures on continuous surfaces.

2.2. Representative part construction
Here, we attempt to find representative parts of each category. For this end, we devel-
oped an evidential clustering method based on the Transferable Belief Model (TBM)
concept [Shafer 1976; Zouhal and Denoeux 1998].

2.2.1. Transferable Belief Model concept. The TBM is based on a two-level model: a credal
level where beliefs are entertained, combined and updated, and a pignistic level where
beliefs are converted into probabilities to make decisions.

— Credal level: Let Ω denote a finite set called the frame of discernment. A Basic Be-
lief Assignment (BBA) or mass function is a function m : 2Ω → [0, 1], such that:∑
A⊆Ωm(A) = 1. m(A) measures the amount of belief that is committed to A. The

subsets A of Ω such that m(A) > 0 are called focal elements.
Given two BBAs m1 and m2 defined over the same frame of discernment Ω and in-
duced by two distinct pieces of information, we can combine them using the Demp-
ster’s combination rule [Shafer 1976] given by:

(m1 ⊗m2)(A) =
1

1−
∑
B∩C=∅m1(B)m2(C)

∑
B∩C=A

m1(B)m2(C). (1)

for all A ⊆ Ω.
— Pignistic level: When a decision has to be made, the beliefs held at the credal level

induce a probability measure at the pignistic level. Hence, a transformation from
belief functions to probability functions must be done. This transformation is called
the pignistic transformation. Let m be a BBA defined on Ω, the probability function
induced by m at the pignistic level, denoted by BetP and also defined on Ω is given
by:

BetP (ω) =
∑

A⊆Ω,ω∈A

m(A)
|A|

(2)

for all ω ∈ Ω and where |A| is the number of elements of Ω in A.

2.2.2. Clustering algorithm. Let us consider a category C in the training set. All objects
in C are processed (each object is partitioned) and the sets of parts are extracted. Let
PC = {P1, ..., PN} be the collection of all object parts in C. We assume that these parts
can be classified into M classes W = {W1, ...,WM} (for the choice of M see Algorithm
1)and each part Pi will be assumed to possess a class label indicating with certainty its
membership to one class in W . Let Ps be an incoming part to be classified. Classifying
Ps means assigning it to one class in W . Using the vocabulary of the evidential theory,
W can be called the frame of discernment of the problem.

Let us denote by Θs the set of the k-nearest neighbors of Ps in PC , according to some
distance measureD (in this paperD represents the L2 distance between 2 descriptors).
Let Pk ∈ Θs a 3D-part classed in Wl. The pair (Pk,Wl) can be regarded as a piece of
evidence that increases our belief that Ps also belongs to Wl. However, this piece of
evidence does not by itself provide 100% certainty. In the evidential formalism, this
can be expressed by saying that only some parts of our belief are committed to Wl.
Since the fact that Pk ∈ Wl does not point to any other particular hypothesis, the
rest of our belief can not be distributed to anything else than W , the whole frame
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of discernment. This item of evidence can therefore be represented by a Basic Belief
Assignment (BBA) mk verifying:

mk(Wl) = χe(−γlD
2(Ps,Pk))

mk(W ) = 1−mk(Wl) (3)

mk(A) = 0 ∀A ∈ 2W \ {W, {Wl}}
With χ a parameter such that 0 ≤ χ ≤ 1. γl is obtained by an optimization procedure
proposed by Zouhal and Denoeux [Zouhal and Denoeux 1998]. We set χ = 0.9. For
each of the k-nearest neighbors of Ps, a BBA depending on both its class label and
its distance to Ps can therefore be defined. In order to make a decision regarding the
class assignment of Ps, these BBAs can be combined using Dempster’s rule [Shafer
1976] into one BBA ms. As a result, Ps will take the label of the class maximizing the
pignistic probability induced by ms. Algorithm 1 summarizes this method.

ALGORITHM 1: : 3D-part clustering algorithm
Input:
Each part in P C is considered as one class. W is initialized to be W = {W1..., WN} and N is the
number of parts in P C , so that M = N
Begin

REPEAT
1. Set a random order to parts in P C ;
FORALL Pi in P C with respect to the order
2. Compute mk (for each of the k-nearest neighbors of Pi);
3. Compute mi by combining mk using Dempster’s rule eq.1;
4. Compute BetP the pignistic probability induced by mi using eq.2;
5. Change the label of Pi in W according to BetP ;
ENDFOR
6. Analyze W and reduce the number of classes;
UNTIL obtaining a stable partition in W ;

End

Once the clustering process is achieved, we compute the centroid of each cluster. The
centroid is a part whose parameter values are the mean of the parameter values of all
the parts in the cluster. Centroids, in this paper, are called representative parts and
denoted by R.

3. LABELING A NEW 3D-OBJECT
In this section, we focus on the labeling of 3D objects. Figure 3 shows the various steps
of this process. First, giving an object O to be labeled (Figure 3 step a), the algorithm
begins by partitioning this object (Figure 3 step b). Second, an invariant descriptor
is associated to each extracted part of that object (Figure 3 step c). The partitioning
and the description of these parts are done in the same way as in the training process.
The labeling of the object O is achieved based on its parts. Here, we assume that
each part can help to predict the category of the whole object. In the context of belief
functions, we can say that each part represents an evidence source which provides an
information regarding the category of the object. By considering all parts, we obtain a
set of evidence sources that can be combined to produce a final decision concerning the
category of the object.
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Fig. 3. The labeling system architecture: the input of the system is a 3D-object to be labeled. The output is
the probabilities of belonging to each category .

3.1. Evidence extracting from parts
Recalling here that, after the training process, each category contains a set of repre-
sentative parts. Given a part extracted from the object to be labeled (for example P1 in
Figure 3 step c), we select in each category the representative part that is the closest to
P1(Figure 3 step d-1). Then, from the selected representative part a mass function that
quantifies the degree of belief given to the assumption “P1 matches with a particular
category Cj” is derived (Figure 3 step d-2). As a result of considering each category
in turn we obtain a set of BBAs that can be combined using the Dempster’s rule of
combination to form a resulting BBA. This BBA syntheses a final belief regarding the
relation between the part and the categories (Figure 3 step d-3).

More formally, let us denote by {Pi}1≤i≤I the set of I parts composing the object
O. From the training set, we enumerate J categories Ωc = {Cj}1≤j≤J . A category Cj
contains a set of representative parts. Let RjPi

be the closest representative part to
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the part Pi in the category Cj . Each pair (Pi, R
j
Pi

) with 1 ≤ j ≤ J constitutes a distinct
item of evidence regarding the category membership of Pi. If Pi is closed to RjPi

then
one will be inclined to believe that both parts belong to the same category. On the
contrary if their dissimilarity is very large then we consider that Pi may belongs to Cj
the complement of the Cj in Ωc. Consequently this item of evidence may be postulated
to induce a basic belief assignment BBA mij over Ωc defined by:

mij(Cj) = µ · S(Pi, Cj)

mij(Cj) = µ · (1− S(Pi, Cj)) (4)

mij(Ωc) = 1− µ

S(Pi, Cj) = e
(−D(Pi,R

j
Pi

)) is a function of the distance between the part Pi and its closest
representative part RjPi

in the category Cj . µ is a weakening coefficient ([Shafer 1976])
associated with the category Cj . In practice, we set µ = 0.9 for all categories.

As a result of considering each category we obtain J BBAs as shown in Figure 3 step
d-2. These masses are combined using the Dempster’s rule of combination to form a
resulting BBA mi synthesizing a final belief regarding the attachment of Pi to each
category. Figure 3 step d-3 shows the resulting BBA mi.

3.2. 3D-object labeling
In order to get a final decision about the category of the unknown 3D-object, all masses
mi i ∈ [1..I] are combined using the Dempster’s rule of combination (Figure 3 step d-4).

A decision can be made regarding the category membership of the 3D-object by ex-
amining the pignistic probability deduced from the resulting mass m (Figure 3 step
d-5). The labeling process is summarized in Algorithm 2.

ALGORITHM 2: : Labeling a new 3D-object
Input: Given a training set of J categories Ωc = {Cj}1≤j≤J . Each category is represented by a
set of representative parts.. Given an 3D-object O to be labeled.
Begin

1. Partition O into I 3D-parts {Pi}1≤i≤I ;
FORALL Pi in {Pi}1≤i≤I

FORALL Cj in Ωc

2. Find the closest representative part Rj
Pi

to the part Pi;
3. Compute mij (according to eq.4);
ENDFOR
4. Compute mi by combining mij using Dempster’s rule eq.1;
ENDFOR
5. Compute m by combining all mi using Dempster’s rule eq.1;
6. Compute the pignistic probability induced by m for all categories using eq.2;
7. Label O according to the highest pignistic probability;

End

3.3. Reject option
Introducing a reject option is very useful, yet a difficult problem in data classification.
Instead of Bayesian classifiers where the reject is modeled empirically by comparing
the posteriori probability with a threshold (T) [Vailaya et al. 2001], the reject in the
belief theory is modeled in natural way. It can be deducted from the conflict on each
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Table I. Representation of
the Dempster’s rule of
combination

C1 ∅ C1 C1

C1 C2 ∅ C2

Ωc C2 C1 Ωc

C2 C2 Ωc

mass distribution in Figure 3 step d-3. The idea consists to divide the conflict into
two components, a conflict due to the non-exhaustivity of the frame of discernment
represented by the reject and an unknown conflict. In order to illustrate this idea, let
us consider a two element frame of discernment Ωc = {C1, C2}. Ωc can also be repre-
sented by

{
C1, C1

}
or
{
C2, C2

}
. Given two BBA m1 and m2 which are defined on Ωc

by: m1 = m1(C1),m1(C1),m1(Ωc) : a 3D-object belongs or does not belong to the cate-
gory C1 or we are in a situation of almost complete ignorance concerning the category
of that part. m2 = m2(C2),m2(C2),m2(Ωc) : a 3D-object belongs or does not belong to
the category C2 or we are in a situation of almost complete ignorance concerning the
category of that part.

Here, m1 and m2 are considered as two independent sources of information to be
combined in order to decide with which category, the object is associated. The evidence
combination of these two belief using Dempsters rule of combination can be repre-
sented by Table I.

The last row and the first column of this table are named by the subsets of Ωc. Each
of the squares in the table correspond to the intersection of the subset of each source
of information m1 and m2. The value of BBA taken for the resulting subset is obtained
by the multiplication of the BBA values of the subsets constituted Ωc. From this table,
we can see that the conflict (the mass of the empty set) is represented by two grids. Its
value is given by:

m12(∅) = m1(C1).m2(C2) +m1(C1).m2(C2) (5)
The first portion of the conflict m1(C1).m2(C2) is created because the two sources of

information m1 and m2 related respectively to category C1 and C2 confirmed that a
3D-object corresponds to the two categories at the same time. In contrast, the second
portion of the conflict m1(C1).m2(C2) is created because the two sources of information
confirm that the 3D-object does not correspond to any category and thus the frame of
discernment is not exhaustive. Hence, in our view, the separation between the first
and the second portion of the conflict must be done because they do not have the same
origin. We define a reject when sources of information confirm that the 3D-object does
not correspond to any category. The reject is added to the frame of discernment as
a new element and its belief degree is given by: m12(reject) = m1(C1).m2(C2). More
specifically, in our case and through multiple sources of informations in the Table in
Figure 3 step (d-2), the mass value of the reject is given by:

mi(Reject) =
J∏
j=1

(mij(Cj)) (6)

Finally, according to the pignistic probability deduced from the mass function com-
puted in section 3.2, a decision can be taken about the reject of the 3D-object.

4. EXPERIMENTAL RESULTS
We present results from three experiments. In the first we evaluate the performance
of the belief based classifier and explore the impact of the choice of descriptors on clas-
sifier accuracy. The accuracy is computed as the percentage of object models which
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Fig. 4. Shrec07 dataset snapshot. Each object corresponds to one category.

are correctly classified. We then compare the performance of the belief based classifier
with the Bayesian classifier [Huber et al. 2004] on the same problem. In the penulti-
mate experiment we describe results with comparison to some state of the art retrieval
methods. The last experiment shows the contribution of reject modeling option of our
framework.

The experiments were conducted on two different datasets. The first dataset is the
Shrec07 database. It contains 400 3D-objects classified into 20 classes. It is a challeng-
ing dataset, not only because of the large number of classes, but also because it con-
tains shapes with highly variable poses and non-rigid or isometric transformations.
Figure 4 shows some examples from this dataset. Each object in the figure represents
one class. The second dataset is composed of shapes from the Tosca and the Sumner
datasets. The Tosca dataset has been proposed by Bronstein et al. [Bronstein et al.
2007] for non-rigid shape correspondence measures. The Sumner dataset has been
proposed by Sumner and Popovic [Sumner and Popovic 2004] for deformable shape
correspondence. The total set size is 380 shapes. Figure 5 shows some examples from
this dataset. Each object in the figure represents one class.

4.1. Framework performance
From a qualitative point of view, Figure 6 and 7 give a good overview of the efficiency of
the framework on the Shrec07 dataset. Figure 6 presents a confusion matrix. Rows in
this matrix correspond to query parts extracted from a human 3D-object, and columns
correspond to the different categories shown in Figure 4 (Ordered from left to right
and from top to bottom). The lightness of each element (i; j) is proportional to the
magnitude of the similarity between the part i and its closest representative one in
the category j. Lighter elements represent better matches, while hot elements indicate
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Fig. 5. Tosca-Sumner dataset snapshot. Each object corresponds to one category.

Fig. 6. The confusion matrix for a human object part categorization. Rows are query parts. Columns are
object categories. (Using the GD2 feature descriptor on the Shrec07 dataset)

worse matches. One can notice in this visualization that the parts of the human object
tends to match with the 12th object category which corresponds to the human one in
Figure 4. This result confirms our assumption that 3D-objects in the same category
have the same parts.

Figure 7 shows another confusion matrix. In this matrix rows correspond to 3D-
object queries and columns correspond to the categories shown in Figure 4. The light-
ness of the diagonal squares of the matrix proves the effectiveness of our classifier.

More quantitatively, Table II and Table III show the classification results of our
framework using different descriptors. On the Shrec07 dataset (Table II), HSI and
Gcords descriptors yielded an accuracy of around 73%, while the GD2 leads to a much
higher accuracy of around 93.5%. These results show that the GD2 is more suited for
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Fig. 7. The confusion matrix for some 3D-object categorization. Rows are query object. Columns are object
categories. (Using the GD2 feature descriptor on the Shrec07 dataset)

Table II. Classification accuracies with feature descriptor changing on the Shrec07 dataset.

Test Data Dataset Size GD2 HSI Gcords GD2-HSI GD2-Gcords HSI-Gcords
Training Set 100 96.7 75.6 74.3 96.7 96.7 90.9

Test Set 300 90.3 70.8 69.9 92.9 91.1 78.5
Entire Dataset 400 93.5 73.2 72.1 94.8 93.9 84.7

Table III. Classification accuracies with feature descriptor changing on the Tosca-Sumner dataset.

Test Data Dataset Size GD2 HSI Gcords GD2-HSI GD2-Gcords HSI-Gcords
Training Set 90 98.5 82.9 85.4 98.9 96.7 94.3

Test Set 290 95.2 80.5 82.6 96.9 90.8 90.7
Entire Dataset 380 96.85 81.7 84 97.9 93.75 92.5
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Table IV. Classification result comparison with the Bayesian classifier on the
Shrec07. (Using the GD2-HSI feature descriptor).

Test Data Dataset Size Our methods Bayesian classifier
Accuracy (%) Accuracy (%)

Training Set 100 96.7 68.9
Test Set 300 92.9 65.5

Entire Dataset 400 94.8 66.63

Table V. Classification result comparison with the Bayesian classifier on the
Tosca-Sumner. (Using the GD2-HSI feature descriptor)

Test Data Dataset Size Our methods Bayesian classifier
Accuracy (%) Accuracy (%)

Training Set 90 98.9 77.9
Test Set 290 96.9 73.4

Entire Dataset 380 97.9 75,65

local shape description. A combination of the GD2 and HSI feature yields a better ac-
curacy than GD2 feature alone 94.8%(the combination is based on the mean distance).
On the Tosca-Sumner dataset (Table III), the combination of the GD2 and HSI feature
also gives the highest accuracy rate 97.9%.

4.2. Belief classifier versus Bayesian classifier
Table IV and Table V show a comparison accuracy between the belief classifier and
the Bayesian classifier on respectively the shrec07 and the Tosca-Sumner datasets.
On the shrec07 dataset, our classifier showed an accuracy of 96.7% and 92.9% on the
training set and an independent test set, respectively. That is to say 94.8% accaracy
over the entire dataset. Using a Bayesian classifier we report only 66.63% accurancy.
On the Tosca-Sumner dataset, results comfirme the contribution of the use of the belief
framework instead of the Bayesian one. The belief classifier reports 97.9% while the
Bayesian one reports only 75.65%.

4.3. Comparison with related work
In this experiment we compare our method effectiveness to methods proposed by Bia-
sotti et al. [Biasotti et al. 2006]. In their work, authors compared the performance of
five similarity measures on four different shape descriptors in classifying 3D objects.
The four different shape descriptors used in their paper are: The spherical harmonics
(SH) in [Kazhdan et al. 2003] which is a volume-based descriptor, The light-field de-
scriptor (LF) in [Chen et al. 2003] which is an image-based descriptor and two topolog-
ical matching methods, the Multi-resolution Reeb graph in (MRG) [Hilaga et al. 2001]
and the Extended Reeb graph (ERG) in [Biasotti and Marini 2005].The five similarity
measures are: The Minimum Distance Classifier (MinDC) which coincides with the
Nearest Neighbor classifier, Maximum Distance Classifier (MaxDC) which classifies
a query by taking into account the most dissimilar descriptor belonging to the class.
The Average Distance Classifier (AvgDC) which is defined as the average distances be-
tween the query and the members of the class. The Centroid Distance Classifier (CDC)
where the query is classified according to its dissimilarity with a representative mem-
ber of a class. And the Atypicity Distance Classifier (ADC) which evokes the notion of
typicity, to represent how much a descriptor is typical of the class it belongs to, with
respect to the elements in the other classes.

In order to demonstrate the effectiveness of our method compared with the Biasotti
et al’s classifiers, we tested our method on the same dataset used by Biasotti et al. This
dataset is a subset of the SHREC07 dataset composed of 280 3D-objects classified into
14 classes. The results of the experiment are shown in Table VI. Each entry is related
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Table VI. Classification result comparison with re-
lated work.

State of the art methods (Rate%)
SH LF MRG ERG

MinDC 89% 88 % 88 % 83 %
MaxDC 33% 38 % 41 % 38 %
AvgDC 66% 73 % 74 % 58 %
CDC 64% 68 % 76 % 60 %
ADC 63% 68 % 73 % 58 %

Our method (Rate%)
97.6%

Table VII. Classification results with Reject option on the Shrec07 dataset.

Classification Training Test Reject Accuracy
Algorithm Set Size Set Size Rate (%) (%)

Our algorithm with reject option 100 400 6.6 96.5
Bayesian algorithm with reject (T=0.1) 100 400 3.1 68
Bayesian algorithm with reject (T=0.15) 100 400 7.3 70.7

Our algorithm without reject option 100 400 0 94.8
Bayesian algorithm without reject 100 400 0 66.63

to the performance of a given shape descriptor (enumerated in the second row) for a
given classifier (reported in the first column of the table). The classification accuracy
of our method is given in the last row. While Biasotti et al. concluded that the MinDC
(nearest neighbor) similarity measure performed the best for all four different shape
descriptors in their work, one can notice that our classifier shows the highest classifica-
tion rate 97.6%. Moreover, the nearest neighbor based approaches require to compare
each object to be classified to all objects in the dataset, which seems to be impractical
with huge databases where our method is preferred, while it requires matching of only
the representative parts. Please note that using a PC with a 3 Ghz Core 2 Duo proces-
sor with 3 GB memory, and a Matlab implementation of our algorithms, the running
time of the labeling process depends on the quality of the meshes and their number of
vertices. The full processing time of a query (from the SHREC07 or the Tosca-Sumner
datasets) varies from 2 to 25 seconds.

4.4. Reject option contribution
Table VII shows the accuracies for 3D-classification with and without reject option on
the Shrec07 dataset. One can notice that the classification accuracy improved from
94.8% to 96.5%. For Bayesian classifier, the 3D-object whose maximum a posteriori
probability is below the threshold (T) in Table VII are rejected. When T=0.15, we no-
tice that the Bayesian classifier rejects much more than our classifier. However our
accuracy is still higher.

5. CONCLUSION
In this paper, we have presented a parts-based method for categorizing 3D-objects us-
ing a new evidential classifier. The categorization process is completely automated and
consists of two different stages. The training stage which lies on the category model
building is based on the belief function theory and it goes into two steps: 1) 3D-object
partitioning and 2) representative parts construction. The second stage is the labeling,
in which belief functions have been also used. In the labeling process, we have intro-
duced a reject option, which can be used to handle the labeling of unknown 3D-objects.
The classifier has been evaluated on two databases of 400 and 380 3D-models. Our
system achieved a classification accuracy over 94.8% and 97.9%, respectively on the
two datasets. The reject option has also been evaluated and the experimental results
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obtained on the Shrec07 dataset show that this option efficiently improves the classi-
fication accuracy from 94.8% to 96.5%. However, the surface partitioning method used
in our framework introduces a bias in the categorizing process. To guarantee stabil-
ity and performance, this partitioning has to be stable within a same class of objects.
In practice, with the SHREC07 and Tosca-Sumner datasets, partitioning turns out to
be homogeneous within most classes. Furthermore, since we have focused our inter-
est to propose meta-algorithm for a relevant categorizing approach, some parts of the
method can be changed and tested (3D partitioning, local descriptors). For example, in
order to deal with imperfect meshes, we can use volume-based partitioning approaches
[Mademlis et al. 2008] which are preferred than surface-based approaches. In the fu-
ture, we would like to investigate the integration of the spatial relation between parts
in the matching process.
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