Every totally real algebraic integer is a tree eigenvalue - Archive ouverte HAL
Article Dans Une Revue Journal of Combinatorial Theory, Series B Année : 2015

Every totally real algebraic integer is a tree eigenvalue

Résumé

Graph eigenvalues are examples of totally real algebraic integers, i.e. roots of real-rooted monic polynomials with integer coefficients. Conversely, the fact that every totally real algebraic integer occurs as an eigenvalue of some finite graph is a deep result, conjectured forty years ago by Hoffman, and proved seventeen years later by Estes. This short paper provides an independent and elementary proof of a stronger statement, namely that the graph may actually be chosen to be a tree. As a by-product, our result implies that the atoms of the limiting spectrum of $n\times n$ symmetric matrices with independent Bernoulli$\,\left(\frac{c}{n}\right)$ entries ($c>0$ is fixed as $n\to\infty$) are exactly the totally real algebraic integers. This settles an open problem raised by Ben Arous (2010).
Fichier principal
Vignette du fichier
draft.pdf (110.26 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00789806 , version 1 (18-02-2013)
hal-00789806 , version 2 (04-09-2014)

Identifiants

Citer

Justin Salez. Every totally real algebraic integer is a tree eigenvalue. Journal of Combinatorial Theory, Series B, 2015, 111, pp.249-256. ⟨10.1016/j.jctb.2014.09.001⟩. ⟨hal-00789806v2⟩
368 Consultations
631 Téléchargements

Altmetric

Partager

More