Every totally real algebraic integer is a tree eigenvalue - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2013

Every totally real algebraic integer is a tree eigenvalue

Résumé

Every graph eigenvalue is in particular a totally real algebraic integer, i.e. a zero of some real-rooted monic polynomial with integer coefficients. Conversely, the fact that every such number occurs as an eigenvalue of some finite graph is a remarkable result, conjectured forty years ago by Hoffman, and proved twenty years later by Bass, Estes and Guralnick. This note provides an independent, elementary proof of a stronger statement, namely that the graph may always be chosen to be a tree.
Fichier principal
Vignette du fichier
draft.pdf (104.44 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00789806 , version 1 (18-02-2013)
hal-00789806 , version 2 (04-09-2014)

Identifiants

Citer

Justin Salez. Every totally real algebraic integer is a tree eigenvalue. 2013. ⟨hal-00789806v1⟩
368 Consultations
631 Téléchargements

Altmetric

Partager

More