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Every totally real algebraic integer is a tree eigenvalue

Justin Salez

Université Paris Diderot & LPMA

Abstract

Every graph eigenvalue is in particular a totally real algebraic integer, i.e.
a zero of some real-rooted monic polynomial with integer coefficients. Con-
versely, the fact that every such number occurs as an eigenvalue of some finite
graph is a remarkable result, conjectured forty years ago by Hoffman, and
proved twenty years later by Bass, Estes and Guralnick. This note provides
an independent, elementary proof of a stronger statement, namely that the
graph may always be chosen to be a tree.
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1. Introduction

By definition, the eigenvalues of a finite undirected graph G = (V,E)
are the roots of the characteristic polynomial ΦG(X) := det(A−XI), where
A = (Aij)i∈V,j∈V is the adjacency matrix of G:

Aij =

{
1 if {i, j} ∈ E;
0 otherwise.

.

Graph eigenvalues capture a considerable amount of structural information,
and their study constitutes the very essence of spectral graph theory [1, 2].

It follows from their definition that graph eigenvalues belong to the ring of
totally real algebraic integers, i.e. zeros of real-rooted monic polynomials
with integer coefficients. Conversely, the remarkable fact that every totally
real algebraic integer is an eigenvalue of some finite graph is a remarkable
result, conjectured forty years ago by Hoffman [3], and established twenty
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years later by Bass, Estes and Guralnick [4]. The purpose of this note is to
give an elementary and self-contained proof of a stronger statement, namely
that the graph may be chosen to be a tree.

Theorem 1. Every totally real algebraic integer occurs as the eigenvalue of
some finite tree.

Given two trees S and T with respective eigenvalues λ1, . . . , λm and
µ1, . . . , µn (counted with multiplicities), it is easy to construct a new tree
whose eigenvalues include λ1, . . . , λm, µ1, . . . , µn (with multiplicities) : simply
root S and T at arbitrary vertices, then duplicate each rooted tree, and con-
nect the four resulting roots to a common additional vertex. Consequently,
we obtain the following Corollary.

Corollary 1. Any finite multi-set of totally real algebraic integers is con-
tained in the spectrum of some finite tree.

Trees undoubtedly play a special and important role in many aspects
of graph theory. We therefore believe that the strengthening provided by
Theorem 1 may be of independent interest, beyond the fact that it provides
a considerably simpler proof of Hoffman’s conjecture.

2. Reformulation of the problem and outline of the proof

Let T = (V,E) be a finite tree, and o ∈ V an arbitrary vertex. Our
starting point is the following well-known and elementary recursion for the
characteristic polynomial of T (see e.g. [2, Proposition 5.1.1]) :

−ΦT (X) = XΦT\o(X) +
∑

i∼o

ΦT\i\o(X). (1)

Note that T \ o consists of deg(o) disjoint subtrees Ti, one for each neighbor
i ∼ o, and hence that ΦT\o(X) =

∏
i∼o ΦTi

(X). Dividing (1) by XΦT\o(X),
one obtains that the rational function

f(T,o)(X) := 1 +
ΦT (X)

XΦT\o(X)

satisfies the following recursion :

f(T,o)(X) =
1

X2

∑

i∼o

1

1− f(Ti,i)(X)
,
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the sum being interpreted as 0 when empty (i.e. when T is reduced to o). It
follows that a number λ ∈ C\{0} is a tree eigenvalue if and only if 1 ∈ F(λ),
where F = F(λ) is the smallest subset of C satisfying for every d ∈ N

(α1, . . . , αd) ∈ F =⇒
1

λ2

d∑

i=1

1

1− αi

∈ F .

Equivalently, F = F(λ) is the smallest subset of C satisfying :

(ZERO) 0 ∈ F ;

(MAP) α ∈ F =⇒
1

λ2(1− α)
∈ F ;

(ADD) α, β ∈ F =⇒ α + β ∈ F .

Remark 1. Strictly speaking, one should work in the extended complex plane
Ĉ = C ∪ {∞} or restrict the property (MAP) to the case α 6= 1 to avoid
divisions by zero. We choose to ignore this issue, as it would unnecessarily
lengthen the proof. Our goal being precisely to show that 1 ∈ F , the skeptical
reader may simply assume that 1 /∈ F throughout the paper, and obtain a
contradiction in the end.

For example, F contains 1
λ2−k

for every k ∈ N, as proved by the following
chain of implications :

0 ∈ F
(MAP)
=⇒ 1

λ2 ∈ F
(ADD)
=⇒ k

λ2 ∈ F
(MAP)
=⇒ 1

λ2−k
∈ F . (2)

We will in fact determine F explicitly, for an arbitrary totally real algebraic
number λ 6= 0. Specifically, we will successively prove the following facts.

I. If λ is a totally real algebraic number then F contains a positive integer.

II. If F contains a positive integer, then F is stable under negation.

III. If F is stable under negation, then

F =

{
P (λ2)

Q(λ2)
: P,Q ∈ Z[X ], Q monic, deg(P ) < deg(Q)

}
.

In particular, if λ is a totally real algebraic integer, then F is the field Q(λ2)
which contains 1, and Theorem 1 is proved. Facts I, II and III will be
established respectively in Section 4, 5 and 6. In Section 3 below, we recall
some basic properties of algebraic numbers that will be useful in the sequel.
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3. Algebraic preliminaries

A number ζ ∈ C is algebraic if it is a zero of some polynomial with
rational coefficients. All such polynomials are then multiple of a unique
monic polynomial P ∈ Q[X ], called the minimal polynomial of ζ . The degree
of ζ is the degree of P . The algebraic number ζ is called

• totally real if all the roots of P are real ;

• totally positive if all the roots of P are non-negative.

The following Lemma gathers the basic properties of algebraic numbers that
will be used in the sequel. These are well-known (see e.g. [5]) and follow
directly from the fact that if P (X) =

∏n

i=1(X−αi) andQ(X) =
∏m

j=1(X−βj)
have rational coefficients, then so do the polynomials

n∏

i=1

m∏

j=1

(X − αi − βj),
n∏

i=1

(
X −

1

αi

)
,

n∏

i=1

m∏

j=1

(X − αiβj)

n∏

i=1

(X + αi),

n∏

i=1

(X2 − α2
i ),

n∏

i=1

(X2 − αi).

Lemma 1 (Elementary algebraic properties).

a. The totally real algebraic numbers form a subfield of C.

b. The set of totally positive algebraic numbers is stable under +,×,÷.

c. If α is totally real and if β 6= 0 is totally positive, then α+kβ is totally
positive for all sufficiently large k ∈ N.

d. The squares of totally real algebraic numbers are the totally positive
algebraic numbers.

We shall also use twice the following elementary result.

Lemma 2. Let ζ be an algebraic number of degree n, and let q1 > . . . > qn
be rational numbers. Then, there exists m1, · · · , mn ∈ Z such that

m1

ζ − q1
+ · · ·+

mn

ζ − qn
∈ N∗. (3)

Moreover, for every 1 ≤ i ≤ n, mi has the same sign as (−1)iP (qi), where
P ∈ Q[X ] is the minimal polynomial of ζ.
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Proof. Since q1 > . . . > qn are pairwise distinct, the n polynomials

Qi(X) :=
∏

j 6=i

(X − qj) (1 ≤ i ≤ n)

form a basis (over Q) of the vector space V = {R ∈ Q[X ]: deg(R) < n}. In
other words, every R ∈ Q[X ] with deg(R) < n can be written uniquely as

R(X) = θ1Q1(X) + · · ·+ θnQn(X), (4)

with θ1, . . . , θn in Q. Evaluating this identity at X = qi yields

θi =
R(qi)∏

j 6=i(qi − qj)
. (5)

In particular, one may take R(X) =
∏n

i=1(X−qi)−P (X) (note that degR <
n since P is monic with degree n) and evaluate (4) at X = ζ to get :

θ1
ζ − q1

+ · · ·+
θn

ζ − qn
= 1,

It follows from (5) that θi must have the same sign as (−1)iP (qi), and multi-
plying this identity by a large enough positive integer yields the lemma.

4. If λ is totally real, then F contains a positive integer

Proof. We first apply Lemma 2 to ζ = λ2 with qi = i, 1 ≤ i ≤ n. From
(2) and the stability of F under internal addition, it follows that the sum
appearing in (3) is the difference of two elements in F . In other words, we
have found ∆ ∈ N∗ and an element α with the following property:

α ∈ F and α−∆ ∈ F . (6)

Since λ is a totally real algebraic number, it follows from part (a) of Lemma 1
and the minimality of F that F is included in the set of totally real algebraic
numbers. In particular, α is a totally real algebraic number. In fact we
may assume without loss of generality that 1−α is totally positive, because
α′ = α + β will also satisfy (6) for any β ∈ F , and choosing β = k

λ2−m
with

k,m ∈ N large enough eventually makes 1− α′ totally positive, by parts (b)
and (c) of Lemma 1. Thus, parts (b) and (d) now guarantee that the number

ζ ′ := λ2(1− α)
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is totally positive. Moreover, for i, j ∈ N, we observe that
{
α, α−∆,

1

λ2

}
⊆ F

(ADD)
=⇒ (j(∆− 1) + 1)α + j(α−∆) +

i

λ2
∈ F

(MAP)
=⇒

1

(∆j + 1)ζ ′ − i
∈ F

(ADD)
=⇒

1

ζ ′ − i
∆j+1

∈ F ,

which shows that

1

ζ ′ − q
∈ F for every q ∈ Q :=

{
i

∆j + 1
: i, j ∈ N

}
. (7)

Finally, let P ∈ Q[X ] be the minimal polynomial of ζ ′, which has n := deg(P )
pairwise distinct non-negative zeros. Since Q is dense in [0,∞), one can find
q1 > · · · > qn in Q that interleave those zeros, in the sense that P (qi) has sign
(−1)i for every 1 ≤ i ≤ n. A second application of Lemma 2 now provides
us with non-negative integers m1, . . . , mn such that

m1

ζ ′ − q1
+ · · ·+

mn

ζ ′ − qn
∈ N∗.

Together with (7), this identity proves that F contains a positive integer.

5. If F contains a positive integer then F is stable under negation

Proof. F satisfies (ZERO) and (ADD), and hence so does the subset

F∗ := F ∩ (−F).

We will now use the assumption to prove that F∗ also satisfies (MAP). This
will imply the desired equality F∗ = F , by minimality of F . By assumption,
F contains a positive integer n, allowing us to write :

α ∈ F∗ =⇒ −α ∈ F
(ADD)
=⇒ −(n− 1)α ∈ F
(ADD)
=⇒ −(n− 1)α + n ∈ F

(MAP)
=⇒

−1

λ2(1− α)(n− 1)
∈ F

(ADD)
=⇒

−1

λ2(1− α)
∈ F .
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Strictly speaking, the above argument is valid only if n 6= 1. But if n = 1,
one may use the following alternative argument :

α ∈ F∗ =⇒ −α ∈ F
(ADD)
=⇒ −α + 2 ∈ F

(MAP)
=⇒ −1

λ2(1−α)
∈ F .

On the other hands, we trivially have

α ∈ F∗ =⇒ α ∈ F
(MAP)
=⇒ 1

λ2(1−α)
∈ F .

Those two facts together precisely mean that F∗ satisfies (MAP).

6. If F is stable under negation, then

F =

{
P (λ2)

Q(λ2)
: P,Q ∈ Z[X], Q monic, deg(P ) < deg(Q)

}
.

Proof. The inclusion ⊆ is immediate, since the set on the right-hand side
satisfies (ZERO), (ADD) and (MAP). Conversely, we will now show that F

contains P (λ2)
Q(λ2)

for every P,Q ∈ Z[X ] with Q monic and deg(P ) < deg(Q).
The proof is by induction over n = degQ. The case n = 0 is simply the fact
that 0 ∈ F . Now, assume that the claim holds for some n ∈ N, and let

P (X) = pnX
n + · · ·+ p0 and Q(X) = Xn+1 + qnX

n + · · ·+ q0,

with p0, . . . , pn, q0, . . . , qn ∈ Z. Since (F ,+) is a group by assumption, it is
in fact enough to consider the following two special cases :

• Case 1 : P (X) = Xn.

• Case 2 : P (X) is monic of degree n with P (0) = 1.

For the first case, observe that 1
1+λ2n ∈ F by our induction hypothesis and

therefore,
1

λ2n+2
=

1

λ2
(
1− 1

1+λ2n

) −
1

λ2
∈ F .

Since F also contains 1
λ2 , . . . ,

1
λ2n by our induction hypothesis, one sees that

λ2n

Q(λ2)
=

1

λ2
(
1 + qn

λ2 + · · ·+ q0
λ2n+2

) ∈ F ,
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as desired. In the second case, observe that

R(X) := P (X)−
Q(X)−Q(0)P (X)

X

is an element of Z[X ] with degree less than n, so our induction hypothesis

guarantees that R(λ2)
P (λ2)

∈ F , and therefore

P (λ2)

Q(λ2)
=

1

λ2
(
1− R(λ2)

P (λ2)
+ Q(0)

λ2

) ∈ F .
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