Band structure of the Ruelle spectrum of contact Anosov flows - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2013

Band structure of the Ruelle spectrum of contact Anosov flows

Frédéric Faure
Masato Tsujii
  • Fonction : Auteur
  • PersonId : 925824

Résumé

If X is a contact Anosov vector field on a smooth compact manifold M and V is a smooth function on M, it is known that the differential operator A=-X+V has some discrete spectrum called Ruelle-Pollicott resonances in specific Sobolev spaces. We show that for |Im(z)| large the eigenvalues of A are restricted to vertical bands and in the gaps between the bands, the resolvent of A is bounded uniformly with respect to |Im(z)|. In each isolated band the density of eigenvalues is given by the Weyl law. In the first band, most of the eigenvalues concentrate of the vertical line Re(z)=< D >, the space average of the function D(x)=V(x)-1/2 div(X)/E_u where Eu is the unstable distribution.
Fichier principal
Vignette du fichier
article.pdf (196.34 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00780217 , version 1 (23-01-2013)
hal-00780217 , version 2 (05-05-2013)
hal-00780217 , version 3 (30-05-2013)

Identifiants

Citer

Frédéric Faure, Masato Tsujii. Band structure of the Ruelle spectrum of contact Anosov flows. 2013. ⟨hal-00780217v1⟩
143 Consultations
366 Téléchargements

Altmetric

Partager

More