Band structure of the Ruelle spectrum of contact Anosov flows - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2013

Band structure of the Ruelle spectrum of contact Anosov flows

Frédéric Faure
Masato Tsujii
  • Fonction : Auteur
  • PersonId : 925824

Résumé

If X is a contact Anosov vector field on a smooth compact manifold M and V is a smooth function on M, it is known that the differential operator A=-X+V has some discrete spectrum called Ruelle-Pollicott resonances in specific Sobolev spaces. We show that for |Im(z)| large the eigenvalues of A are restricted to vertical bands and in the gaps between the bands, the resolvent of A is bounded uniformly with respect to |Im(z)|. In each isolated band the density of eigenvalues is given by the Weyl law. In the first band, most of the eigenvalues concentrate of the vertical line Re(z)=< D >, the space average of the function D(x)=V(x)-1/2 div(X)/E_u where Eu is the unstable distribution. This band spectrum gives an asymptotic expansion for dynamical correlation functions.
Fichier principal
Vignette du fichier
article.pdf (217.28 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00780217 , version 1 (23-01-2013)
hal-00780217 , version 2 (05-05-2013)
hal-00780217 , version 3 (30-05-2013)

Identifiants

Citer

Frédéric Faure, Masato Tsujii. Band structure of the Ruelle spectrum of contact Anosov flows. 2013. ⟨hal-00780217v2⟩
143 Consultations
366 Téléchargements

Altmetric

Partager

More