Index of Singularities of Real Vector Fields on Singular Hypersurfaces - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2012

Index of Singularities of Real Vector Fields on Singular Hypersurfaces

Résumé

Gómez-Mont, Seade and Verjovsky introduced an index, now called GSV-index, generalizing the Poincaré-Hopf index to complex vector fields tangent to singular hypersurfaces. The GSV-index extends to the real case. This is a survey paper on the joint research with Gómez-Mont and Giraldo about calculating the GSV-index $\Ind_{V_\pm,0}(X)$ of a real vector field $X$ tangent to a singular hypersurface $V=f^{-1}(0)$. The index $\Ind_{V_{\pm,0}}(X)$ is calculated as a combination of several terms. Each term is given as a signature of some bilinear form on a local algebra associated to $f$ and $X$. Main ingredients in the proof are Gómez-Mont's formula for calculating the GSV-index on \emph{ singular complex} hypersurfaces and the formula of Eisenbud, Levine and Khimshiashvili for calculating the Poincaré-Hopf index of a singularity of a \emph{real} vector field in $\R^{n+1}$

Mots clés

Fichier principal
Vignette du fichier
Mardesic-Xavierfest_corcor.pdf (188.66 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00771625 , version 1 (09-01-2013)

Identifiants

Citer

Pavao Mardesic. Index of Singularities of Real Vector Fields on Singular Hypersurfaces. 2012. ⟨hal-00771625⟩
115 Consultations
273 Téléchargements

Altmetric

Partager

More