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...with affection and respect,
for all the pleasure of working with Xavier

INDEX OF SINGULARITIES
OF REAL VECTOR FIELDS

ON SINGULAR HYPERSURFACES

PAVAO MARDEŠIĆ

Abstract. Gómez-Mont, Seade and Verjovsky introduced an in-
dex, now called GSV-index, generalizing the Poincaré-Hopf index
to complex vector fields tangent to singular hypersurfaces. The
GSV-index extends to the real case.

This is a survey paper on the joint research with Gómez-Mont
and Giraldo about calculating the GSV-index IndV±,0(X) of a real

vector field X tangent to a singular hypersurface V = f−1(0).
The index IndV±,0

(X) is calculated as a combination of several
terms. Each term is given as a signature of some bilinear form on
a local algebra associated to f and X . Main ingredients in the
proof are Gómez-Mont’s formula for calculating the GSV-index
on singular complex hypersurfaces and the formula of Eisenbud,
Levine and Khimshiashvili for calculating the Poincaré-Hopf index
of a singularity of a real vector field in Rn+1.

1. Introduction

This paper is a survey of the joint work with Xavier Gómez-Mont
and Luis Giraldo spread over some 15 years. We give a formula for
calculating the index of singularities of real vector fields on singular
hypersurfaces. Some partial results are published in [8], [10], [11], [12].
In [13], Gómez-Mont, Seade and Verjovsky studied vector fields tan-

gent to a complex hypersurface with isolated singularity. They intro-
duced a notion of index, now called GSV-index at a common singularity
of the vector field and the hypersurface (see also [1]). It is a kind of
relative version of the Poincaré-Hopf index at a singularity. A natural
question is how can one calculate this index. Complex case was studied
first. It was solved by Gómez-Mont in his seminal paper [6]. Gómez-
Mont’s formula expresses the GSV index via dimensions of certain local
algebras. The GSV index can be generalized to the real case. More
precisely, depending on the side of the singular hypersurface, there are
two GSV indices. Real case, is more difficult than the complex case
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2 PAVAO MARDEŠIĆ

since in the real case a simple singularity can carry the index +1 or
−1, whereas in the complex case all simple singularities count as +1.
In the absolute real case Eisenbud, Levine and Khimshiashvili ex-

pressed the Poincaré-Hopf index of a vector field in terms of the signa-
ture of a bilinear form.
Our result in the relative real case expresses the GSV-index of a real

vector field on a singular variety as a sum of certain terms. Each term
is a signature of a non-degenerate bilinear form on some local algebra.
Our proof has two essential ingredients: on one hand Gomez-Mónt’s

result in the singular complex case and on the other hand the Eisenbud,
Levine, Khimshiashvili’s result in the real absolute case.

1.1. Real absolute case. Let us recall first the definition of the Poincaré-
Hopf index of a singularity of a real vector field in Rn+1. Let

X =

n
∑

i=0

X i ∂

∂xi
(1)

be a smooth vector field in Rn+1 having an isolated singularity at the
origin X0 = 0. One can identify the vector field X with a mapping
X : (Rn+1, 0) → (Rn+1, 0). Taking a small sphere Sn around the origin,
the vector field X induces a map N = X

||X||
: Sn → S

n, where S
n is the

unitary sphere in Rn+1. The Poincaré-Hopf index Ind0(X) of the vector
field X at the origin is defined as the degree of N . That is, Ind(X, 0)
is the number of pre-images of generic points taken with orientation.

Example 1. LetX be the vector fieldX(x, y) = x ∂
∂x
+y ∂

∂y
in R2 having

a node at the origin and let Y be the vector field Y (x, y) = x ∂
∂x

− y ∂
∂x

having a saddle at the origin.
Then Ind0(X) = 1 and Ind0(Y ) = −1.

1.2. Complex absolute case. Consider the complex n-dimensional
space Cn, with complex coordinates x1, . . . , xn and a complex vector
field X of the form X =

∑n
i=0X

i ∂
∂xi

. We can identify Cn with R2n.
With this identification a holomorphic vector field on Cn becomes a
smooth real vector field on R2n and one can apply the previous defi-
nition of the Poincaré-Hopf index Ind0(X) to a singularity of a holo-
morphic vector field. Note that not every smooth real vector field on
R2n comes from a holomorphic vector field on Cn. By holomorphy, a
holomorphic vector field seen as a map preserves orientation. Hence
the index of a singularity of a holomorphic vector field is necessarily
positive.



INDEX OF REAL VECTOR FIELDS 3

Example 2. Let n = 1 and let X = x ∂
∂x

and Y = x2 ∂
∂x

be vector fields
in C. Then Ind0(X) = 1 and Ind0(Y ) = 2.

In the complex case, the Poincaré-Hopf index is simply the multi-
plicity. One counts how many points are hidden at the singularity at
the origin.

2. Definition of the GSV-index in the complex and real

case

2.1. Smooth points. Let now f : (Rn+1, p) → (R, 0) be a germ of
an analytic function. Then V = f−1(0) is a germ of a hypersurface at
p. We say that a vector field defined in a neighborhood of p ∈ V is
a vector field tangent to V , if there exists an analytic function h such
that

X(f) = fh. (2)

The function h is sometimes called the cofactor ofX . Assume first that
p ∈ V is a regular point of f . Then the variety V is smooth in a neigh-
borhood of p. Let x = (x1, . . . , xn) be a chart of V in a neighborhood
of p. We assume moreover that the orientation of ∇f, ∂

∂x1
, . . . , ∂

∂xn
is

positive. The chart x = (x1, . . . , xn) transports the vector field X to
Rn. One then applies the usual definition of the Poincaré-Hopf index.
Thus we define the relative Poincaré-Hopf index IndV,p(X) of a vector
field tangent to a hypersurface, relative to the surface. It is easy to
verify that the definition is independent of the choices.
If f : (Cn+1, p) → (C, 0) is a germ of holomorphic function instead,

p ∈ Cn+1 is a regular point of f , V = f−1(f(p)) ⊂ Cn+1 is a com-
plex hypersurface, and X a holomorphic vector field tangent to V , one
transports as previously the vector field to Cn and defines the relative
Poincaré-Hopf index IndV,p(X) in the complex case. Note that in the
relative complex case, just as in the absolute complex case, the relative
index is always positive.

2.2. Singular points, GSV-index in the complex case. Let as
previously, f : (Cn+1, 0) → (C, 0) be a germ of a holomorphic function.
Assume now that p ∈ Cn+1 is an isolated singularity of f . Then V =
f−1(0) ⊂ C

n+1 is a complex hypersurface with isolated singularity at
p. Let X be a holomorphic vector field defined in a neighborhood of
p ∈ Cn+1 tangent to V . That is, relation (2) holds. In [13], Gómez-
Mont, Seade and Verjovsky defined what is now called the GSV-index of
a vector field tangent to a singular variety at the singularity IndV,0(X).
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In order to formulate the definition, let us first recall that the holo-
morphic function f : (Cn+1, 0) → (C, 0) having an isolated singularity
at the origin defines a Milnor fibration: f : B \ {0} → C

∗, where
B ⊂ Cn+1 is a small ball around the origin. Denote Vε = f−1(ε). For
ε 6= 0 small, close enough to zero, all fibers Vε ∩ B are isotopic. Note
that the vector field X is not necessarily tangent to the fibers Vε ∩ B,
for ε 6= 0. We modify X slightly, giving a C∞ vector field Xε tangent
to a fiber Vε ∩ B, for ε 6= 0 close to zero. We assume moreover that
the restriction of the vector field Xε on ∂(Vε ∩ B) is isotopic to the
restriction of the vector field X to ∂(V ∩ B) see [15] and [1].
The GSV-index can be defined by the formula

IndV,0(X) =
∑

pi(ε)∈Vε∩B

IndVε,pi(ε)(Xε). (3)

It follows from the Poincaré-Hopf theorem that the definition is inde-
pendent of all choices. Indeed, the Poincaré-Hopf theorem says that
the right-hand side of (3) is the Euler characteristic χ(Vε ∩ B) up to
some correction term given by the behavior of any vector field Xε on
∂(Vε ∩B). Note that by the Milnor fibration theorem all regular fibers
Vε ∩ B, ε 6= 0, have the same Euler characteristic. Moreover, the be-
havior of any vector field in Xε on ∂(Vε∩B) is the same as the behavior
of X on ∂(V ∩ B). Hence the correction term is independent of the
choices.
For an equivalent topological definition using residues see Suwa [17].

Proposition 1. [1] Up to a constant K(V ) independent of the vector
field X, the GSV-index IndV,0(X) is characterized by the two following
conditions:

(i): At smooth points p ∈ V , the GSV-index coincides with the
relative Poincaré-Hopf index IndV,p(X).

(ii): The GSV-index satisfies the law of conservation of number:
For any holomorphic vector field X ′ tangent to V sufficiently
close to X the following law of conservation of number holds:

IndV,0(X) =
∑

pi∈V

IndV,pi(ε)(X
′). (4)

Here pi are singularities of X ′ belonging to V , which are close
to 0.

The constant can be determined by calculating the GSV-index IndV,0(X),
for any vector field tangent to V .
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2.3. GSV-index in the real case. Let now f : (Rn+1, 0) → (R, 0)
be a germ of a real analytic function. In this case, there is no Milnor
fibration, or more precisely there are two Milnor fibrations: one for
strictly positive small values of ε and one for small strictly negative
values of ε. The Euler characteristic of all fibers Vε ∩ B, for ε small
of the same sign are the same, but can be different for ε positive or ε
negative. (Think of f : R3 → R given by f(x, y, z) = x2 + y2 − z2.) As
in the complex case, in the real case one now defines the GSV-index.
More precisely, one defines two GSV indices IndV ±,0(X), taking Vε, for
ε positive or negative respectively.

3. Calculating the GSV-index on complex hypersurfaces

A formula for calculating the GSV-index in the complex case was
given by Gómez-Mont in [6]. Let us first define the principal ingredi-
ents. Let OCn+1,0 be the algebra of germs of holomorphic functions at

the origin. Let f ∈ OCn+1,0 be given, with f(0) = 0. Let fi = ∂f
∂zi

,
i = 0, . . . , n, be the partial derivatives of f . Assume that 0 is an
isolated singularity of f . This means that the algebra

A
C =

OCn+1,0

(f0, . . . , fn)
(5)

is finite dimensional. Here OCn+1,0 is the algebra of germs at 0 of
holomorphic functions. The dimension µ = dim(AC) is the Milnor
number of the singularity. Let X be a germ of holomorphic vector field
at 0 ∈ Cn+1 given by (1). Assume that 0 is an isolated singularity of
X . This means that the algebra

B
C =

OCn+1,0

(X0, . . . , Xn)
(6)

is finite dimensional. Its dimension dim(BC) is the Poincaré-Hopf index
Ind0(X) of the vector field X in the ambient space.
Let V = f−1(0) be the hypersurface defined by f and assume that

X is tangent to V . That is, (2) holds for some holomorphic function
h.

Theorem 1. [6] The GSV-index of a holomorphic vector field X tan-
gent to a complex hypersurface V at an isolated singularity 0 is given
by.

IndV,0(X) =

{

dim BC

(f)
− dim AC

(f)
, if (n+1) even,

dimBC − dim BC

(h)
+ dim AC

(f)
, if (n+1) odd.

(7)
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We give the idea of proof of Theorem 1. As recalled in Proposition 1,
the GSV index is defined up to a constant by condition (i) and (ii) in
Proposition 1. In [6] Gómez-Mont considers the Koszul complex :

0 → Ωn−1
V,0 →Ωn−1

V,0 → · · · → Ω1
V,0 → OV,0 → 0, (8)

where

Ωi
V,0 =

ΩCn+1,0

fΩCn+1,0 + df ∧ Ω
C
i−1

n+1,0

. (9)

is the space of relatively exact forms on V and the arrows in (8) are
given by contraction of forms by the vector field X . Gómez-Mont
defines the homological index Indhom

V,0 as the Euler characteristic of the
complex (8):

Indhom
V,0 =

n−1
∑

i=0

(−1)i dimHi(K) (10)

where Hi(K), i = 0, . . . , n − 1, are the i-th homology groups of the
Koszul complex (8). It is easy to see that at smooth points the homo-
logical index coincides with the relative Poincaré-Hopf index. In [7],
Giraldo and Gómez-Mont show that the homological index verifies the
law of conservation (ii) of Proposition 1. Hence, the homological index
coincides with the GSV-index up to a constant K(V ). The homologi-
cal index has the advantage that it can be calculated using projective
resolutions of a double complex. The horizontal complexes in the dou-
ble complex are obtained as a mapping cone induced by multiplication
by the cofactor h in (2) in the Koszul complex in the ambient space.
Vertical complexes are obtained as the mapping cone induced by mul-
tiplication by f in the de Rham complex in the ambient space. To
show that the homological index Indhom

V,0 coincides with the GSV-index
IndV,0, it is sufficient for each f to calculate both indices on a vector
field X associated to f . If the dimension of the ambient space (n + 1)
is even, a natural candidate is the Hamiltonian vector field

Xf =

(n+1)/2
∑

i=1

[f2i
∂

∂x2i−1
− f2i−1

∂

∂x2i
]. (11)

If (n+ 1) is odd, Gómez-Mont uses the vector field

Yf = f
∂

∂x0

(n+1)/2
∑

i=1

[f2i
∂

∂x2i−1
− f2i−1

∂

∂x2i
] (12)

in generic coordinates xi.
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4. Calculating the Poincaré-Hopf index of vector fields

in Rn+1

When studying the Poincaré-Hopf index in the real case, one has to
take into account orientation and not just multiplicity. This is done
using some bilinear forms. We recall in this section the results of Eisen-
bud, Levine [4] and Khimshiashvili [14] who solve this problem for real
vector fields in the ambient space R

n+1. This, in addition to Gómez-
Mont’s formula for calculating the GSV-index on complex hypersur-
faces, are the two main ingredients in our study.
Let

B =
ARn+1,0

(X0, . . . , Xn)
, (13)

where ARn+1,0 is the algebra of germs at 0 of analytic functions in Rn+1.
Let X , given by (1), be a germ of analytic vector field with an alge-
braically isolated singularity. That is, the singularity when considered
over the complex domain remains isolated. Then the algebra B is finite
dimensional. Let J = det(∂X

i

∂xj
) ∈ ARn+1,0 be the Jacobian of the map

defined by the vector field X . It can be shown that the class [J ] ∈ B of
J in B is non-zero. In [4] and [14] Eisenbud, Levine and Khimshiashvili
define a nondegenerate bilinear form < , >B,J as follows.

B× B
·

−→B
L

−→R. (14)

Here the first arrow is simply multiplication in the algebra B and L is
any linear mapping such that L([J ]) > 0. Of course, the bilinear form
depends on the choice of L. However its signature sgn(B, J) = sgn(<
, >B,J) does not. More precisely Eisenbud, Levine, Khimshiashvili show

Theorem 2. Let X be a germ at 0 of a real analytic vector field on
Rn+1 having an algebraically isolated singularity at the origin. Then the
Poincaré-Hopf index IndRn+1,0(X) of the vector filed X at the origin is
given by

IndRn+1,0(X) = sgn(B, J). (15)

In order to prove the theorem, one has to prove that the signature
sgn(B, J) coincides with the Poincaré-Hopf index for simple singulari-
ties and verifies the law of conservation of number. The first claim is
easily verified. The key-point of the proof of the law of conservation of
number is the claim that the bilinear form < , >B,J is nondegenerate.
Once one knows that the form is nondegenerate, the law of conserva-

tion of number will follow. Indeed, let X ′ be a small real deformation
of the vector field X . As the bilinear form is nondegenerate, its signa-
ture does not change by a small deformation. The local algebra B will



8 PAVAO MARDEŠIĆ

decompose into a multilocal algebra B(X ′) of the same dimension con-
centrated in some real point and complex conjugated pairs of points.
One verifies that the contribution to the signature of the pairs of com-
plex conjugated points is zero. From the preservation of signature,
there follows the law of conservation of number once one knows that
the bilinear form is nondegenerate.
The nondegeneracy of the form < , >B,J is a more general feature.

It follows from the fact that J generates the socle of the algebra B.
By definition a socle in an algebra is the minimal nonzero ideal of the
algebra.
In general, let B be a real algebra. Assume that the socle of B is

one-dimensional generated by J ∈ B. We can define a bilinear form
< , >B,J as above. Following the proof of Eisenbud-Levine in [4] one
verifies that the form < , >B,J is nondegenerate. Its signature does not
depend on the choice of the linear map L such that L(J) > 0.

Example 3. Consider for instance B =
A

R2,0

(x2,y3)
. Then the socle is one-

dimensional generated by J = xy2. The bilinear form < , >B,J is a
nondegenerate form on the six dimensional space B.

If B =
A

R2,0

(x2,xy2,y3)
, then the socle is generated by xy and y2. It is not

one-dimensional and one cannot define a nondegenerate bilinear form
as above.

5. Bilinear Forms on Local Algebras

Let B =
A

Rn+1,0

(X0,...,Xn)
be a finite dimensional complete intersection al-

gebra. This assures that its socle is one-dimensional generated by the
Jacobian J = det(∂X

i

∂xj
).

In [10], we observed that the Eisenbud-Levine, Khimshiashvili sig-
nature generalizes. Let h ∈ B be arbitrary. Denote Ann(h) = {g ∈
B : gh = 0} the annihilator ideal of h. For B as above, the al-
gebra B

Ann(h)
has a one-dimensional socle generated by the element

J
h
∈ B

Ann(h)
. The assumption that (J) is minimal guarantees that J

can be divided by h. We define the bilinear form < , >B,h,J on B

Ann(h)

by < b, b′ >B,h,J= L(bb′h), where L : B → R is a linear mapping
such that L(J) > 0. In other words < b, b′ >B,h,J= Lh(bb

′), where
Lh(

J
h
) > 0 is a linear mapping. Note that in general the element J

h
is

not well defined in B. However, the ambiguity is lifted in the quotient
space B

Ann(h)
.
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We put

sgn(B, h, J) = sgn < , >B,h,J= sgn(
B

Ann(h)
,
J

h
). (16)

5.1. Signatures associated to a singular point of a hypersur-
face. Let now f : (Rn+1, 0) → (R, 0) be a germ of analytic function
having an algebraically isolated singularity at the origin. Let fi =

∂
∂xi

be the partial derivatives of f . Consider the local algebra A =
A

Rn+1,0

(f0,...,fn)
.

It is a finite complete intersection algebra. Its socle is one-dimensional

generated by the Hessian Hess(f) = det( ∂2f
∂xi∂xj

).

Define a flag of ideals in A

Km = AnnA(f) ∩ (fm−1), m ≥ 1. (17)

Note that
0 ⊂ Kℓ+1 ⊂ · · · ⊂ K1 ⊂ K0 = A. (18)

Define a family of bilinear forms < , >f,m: Km ×Km → R by

< a, a′ >f,m=<
a

fm−1
, a′ >, m = 0, . . . , ℓ+ 1, (19)

where < , >A,Hess(f) is the bilinear form defined in (14) for some linear
map L with L(Hess(f)) > 0. In particular< a, a′ >f,0=< fa, a′ >A,Hess(f).
The form < , >f,0 degenerates on AnnA(f), but on K0/K1 defines a
nondegenerate form. We have < a, a′ >f,1=< a, a′ >A,Hess(f). This
form degenerates on K2 = AnnA(f) ∩ (f) etc. In [12], we define

σi = sgn < , >f,i, i = 0 . . . , ℓ. (20)

The signatures σi are intrinsically associated to the singularity 0 of f .

6. Main Result

The following theorem resumes our results [10], [11], [8], [12] about
the calculation of the GSV-index of singularities of real vector fields on
hypersurfaces:

Theorem 3. Let f : (Rn+1, 0) → (R, 0) be a germ of analytic function
with algebraically isolated singularity at the origin. Let X be an analytic
vector field in R

n+1 having an algebraically isolated singularity at the
origin. Assume that X is tangent to V = f−1(0). That is X(f) = hf ,
for some analytic function h. Then

(i): if (n+ 1) is even,

IndV +,0(X) = IndV −,0(X) = sgn(B, h(X), J(X))−sgn(A, h(X),Hess(f)).
(21)
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(ii): if (n + 1) is odd,

IndV ±,0(X) = sgn(B, h(X), J(X)) + sgn(A,Hess(f)) +K±, (22)

where
K+ =

∑

i≥1

σi, K− =
∑

i≥1

(−1)iσi. (23)

7. Proof of the Main theorem

We give here the main ingredients of the proof of Theorem 3. The
GSV-index is determined by three properties:

(i): Value at smooth points
(ii): The law of conservation of number
(iii): Constants K± depending only on the orientation (side) V±

of the variety V = f−1(0) and not on the vector field.

One verifies easily that at smooth points of V , the formula is valid.
Indeed, from the tangency condition there follows (f) ⊂ Ann(h). In
smooth points the converse is also true. Hence Ann(h) = (f). Next,
working in a local chart at smooth points one shows that sgn < , >B,h,J

gives the relative Poincaré-Hopf index of the vector field. Then, one has
to show that our formulas (21) and (22) verify the law of conservation
of number. Some parts are easier in the even case and some other are
easier in the odd case.

7.1. (n + 1) odd case. The law of conservation of number is easy for
(n + 1) odd. Indeed, in this case the complex index, up to a constant

depending only of f , is dimBC−dim BC

(h)
= dim BC

Ann(h)
(see Theorem 1).

On the other hand on B

Ann(h)
there is the non-degenerate form < , >B,h,J .

Make a small deformation X ′ of X , tangent to V . The corresponding
local algebra B or rather its complexification decomposes into a multi-
local algebra concentrated in several points corresponding to singular
points of X ′. The dimension of the multilocal algebra is equal to the
sum of the dimensions at points in which it is concentrated. On the

other hand, by Theorem 1 of Gomez-Mont, the dimension dim BC(X′)
Ann(h)

verifies the law of conservation of number. Hence, the dimension of
the multilocal algebra obtained after deformation X ′ of X is equal to

the dimension of the local algebra dim BC

Ann(h)
before the deformation.

This permits to extend continuously the bilinear form < , >h,J from
the algebra B

Ann(h)
to its deformation. By nondegeneracy of the form

< , >h,J , its signature is unchanged by a small deformation. This gives
the law of conservation of number for the signature of < , >h,J when
adding the signatures for all (real or complex) singular points of X ′
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appearing after deformation. Note that from the tangency condition
(2), it follows that (f) ⊂ Ann(h), so only points in V = f−1(0) can
contribute to the signature sgn < , >B(X′),h,J after deformation. At
the end, let us note that complex zeros of X ′ come in pairs. One
verifies that the contribution to the signature of each pair is equal to
zero. Hence only real singular points of X ′ belonging to V contribute.
The law of conservation of number (in the real case) for the formula
sgn(B, h, J) follows.
The final step in proving the formula in the case (n + 1) odd is to

adjust the constant sgn(A,Hess(f)) +K±. This is difficult in the odd
case. We will come back to it in subsection 7.4.

7.2. (n+ 1) even case. In the (n+ 1) even case Theorem 1 says that

in the complex case, up to a constant, the index is given by dim BC

(f)
.

There is no natural bilinear form on BC

(f)
. We consider a non-degenerate

bilinear form on BC

Ann(h)
. We stratify the space of bilinear vector fields

by the dimension of the ideal (h) in the algebra A. The signature
sgn(h(X), J(X)) verifies the law of conservation of number in restric-
tion to each stratum. We show that when changing the stratum the
jump in sgn(B, h, J) is equal to the jump in sgn(A, h,Hess(f)). The
two jumps hence compensate in the index formula (21). In order to
show the equality of the jumps it is sufficient to study the place where
all strata meet i.e. the stratum of highest codimension. One has the
highest codimension for the Hamiltonian vector field Xf given by (11),
when h = 0. Note that in this case the two algebras A and B coincide
and J(X) = Hess(f).
In this case it is very easy to determine the constant (independent

of the vector field) adjusting the signature formula with index. For
that purpose, one studies the Hamiltonian vector field Xf . Note that
the Hamiltonian vector field Xf is tangent to all fibers Vε = f−1(ε).
Moreover, it has the same behavior on the boundary Vε ∩ B, for ε 6=
0 as on V ∩ B. The Hamiltonian vector field Xf has no zeros on
Vε = f−1(ε), for ε 6= 0. Hence IndV±

(Xf ) = 0. On the other hand
sgn(B, h(X), J(X))− sgn(A, h,Hess) = 0, as A = B and J = Hess. It
follows that no correction term has to be added to sgn(B, h(X), J(X))−
sgn(A, h,Hess) in order to obtain the formula for IndV±,0(X).

7.3. Why is IndV+,0(X) = IndV−,0(X) in the (n+1) even case and
not in the odd case? We explain here why IndV+,0(X) = IndV−,0(X)
in the (n + 1) even case and not in the odd case. Note first that the
index of a vector field in the ambient space is an even function if the
dimension (n+ 1) of the ambient space is even and is an odd function
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if (n + 1) is odd. We next use Morse theory. Consider the vector field
∇f. By Morse theory, the Euler characteristic χ verifes:

χ(V+) = 1 + Ind(∇f)
χ(V−) = 1 + Ind(−∇f).

(24)

Here χ(V+) is the Euler characteristic of Vε ∩ B, for ε > 0 small. The
value χ(V−) is defined analogously.
If (n+1) is even, then Ind(∇f) = Ind(−∇f), so χ(V+) = χ(V−) and

IndV+,0(X) = − IndV−,0(X).
If (n + 1) is odd, then Ind(−∇f) = − Ind(∇f), so χ(V +) − 1 =

−(χ(V−)− 1) and IndV−,0(X) = 2− IndV+,0(X).

7.4. Adjusting the constant K in the (n+ 1) odd case. In order
to complete the sketch of proof of the main theorem, we have to explain
how do we calculate the constant K± appearing in the (n+1) odd case
(22).
As shown previously, the two signature terms in (22) calculate the

GSV-index up to a constant independent of the vector field. In order to
determine the constant, for each V = f−1(0), one has to take a vector
field tangent to V , having an algebraically isolated singularity at the
origin. Contrary to the situation in the (n + 1) even case, in the odd
case, there is no such natural vector field. As in [6], we use the family
of vector fields

Xt = (f − t)
∂

∂x0

(n+1)/2
∑

i=1

[f2i
∂

∂x2i−1

− f2i−1
∂

∂x2i

] (25)

in generic coordinates. The local algebra is B = B(X0) =
A

Rn+1,0

(f,f1,f2,...,fn)
.

Note that Xt is tangent to Vt = f−1(t), for any t. More precisely,
Xt(f) = f0f , so h = f0 is the cofactor of Xt. Hence, by definition

IndV+
(X, 0) =

∑

pt∈Vt∩B

IndVt,pt(Xt). (26)

But, these indices are calculated using the multilocal algebra Bt and

the relative Jacobian J(Xt)
f0

. That is, the index is given by the signature

of the bilinear form < , >Bt
, for t 6= 0 small. For the index IndV+,0(X0),

we have to take it positive and for IndV−,0(X0) it is negative. The
problem is that this form degenerates on AnnBt

(f0), for t = 0.
We prove in [12] a general result for algebrasA = A(f) and B = B(X)

associated to a vector field X tangent to V = f−1(0) i.e. verifying (2):

Lemma 1. There exists a natural isomorphism between the algebras
AnnB(h) and AnnA(f).
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Proof. The isomorphism is given by the mapping g 7→ k if gh = fk. �

Lemma 1 permits to transport all higher order signature vanishing in
AnnB0

to a natural algebra A. We apply it to our vector field Xt. When
looking at the signature of the form < , >Bt

, we have one part which
does not degenerate. It is the part in B

AnnB(f0)
. The bilinear form < , >Bt

degenerates at different orders on different parts of AnnBt
(f0). By

Lemma 1, we transport the bilinear form < , >Bt
to a bilinear form in

the coordinate independent algebra AnnA(f). Note that in Bt, we have
f = t, so degeneration of < , >Bt

at different orders of t corresponds to
multiplication by f in the algebra AnnA(f). For more details see [12].

8. Open problems

8.1. Geometric interpretation of the signatures σi. Filtration
of contributions to the Euler characteristic of the generic fiber.
In Theorem 3 appear higher order signatures σi defined in (20). These
signatures are associated to the singularity f alone. We would like
to give a geometric interpretation of these numbers. We believe that
they correspond to parts of the Euler characteristic of the generic fiber,
filtered by the speed of arrival at the singular fiber.
Let us be more precise. In [18] Teissier studies polar varieties in

the complex case. He considers a germ of a function f : (C2, 0) →
(C, 0) having an isolated critical point at the origin. He considers a
Morsification fs = f − sx0 of f in generic coordinates (x0, . . . , xn). Its
critical points are given by

f0 − s = f1 = · · · = fn = 0. (27)

Let Γ be the curve given by f1 = · · · = fn = 0. The curve Γ is
called polar curve. In general it has several branches Γ = ∪ℓ

q=1Γq. By
Morsification, the critical point 0 of f decomposes in several critical
points arriving along the polar curve to the origin. For each value of
s 6= 0, the critical points of fs belong to f−1

0 (s) ∩ Γ. Each critical
point corresponds to a vanishing cycle contributing to Hn(Vt0). In
[18], Teissier observed that, after Morsification, critical points arrive at
different speed at the origin. More precisely, each component Γq of the
polar curve Γ is parametrized as

x0(tq) = t
mq

q + · · ·
. . . . . . . . .

xn(tq) = λnt
kq,n
q + · · ·

(28)

where mq ≤ kq,i. In [18], Teissier calculates the exponent mq. One can
use x0 (or the corresponding critical value) as a measure for the speed
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of approach of a critical point in the Morsification. One can filter the
n-th group of homology of the generic fiber Hn(f

−1(t)) i.e. the space
of vanishing cycles, by the speed of arrival of the corresponding critical
points. We believe that this filtration is given by the filtration (18) or
rather its complex counterpart. The dimensions

0 = dim
A

K0

≤ dim
A

K1

≤ dim
A

Kℓ+1

≤ dimA (29)

would measure the dimension of the space of vanishing cycles arriving
at a certain minimal speed.
The signatures σi would be the real counterpart. The signature σ0 is

a signature of a bilinear form on A. It measures the Euler characteristic
χ(Vt). We believe that the signatures σi that we introduced measure
the filtered part of the Euler characteristic of the generic fiber χ(Vt),
the filtration being done by taking only the part of the topology of
the fiber arriving at a certain minimal speed. We hope to be able to
address this problem in a continuation of our research.

8.2. Generalization to higher codimension. In [2] Bothmer, Ebel-
ing and Gómez-Mont generalized Gómez-Mont’s formula (Theorem 1)
to a formula for the index of a vector field on an isolated complete
intersection singularity in the complex case. A natural problem would
be to extend the result to the real case. Here, as in our Theorem 3,
one would certainly have to define some bilinear forms on the spaces
studied in [2].
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