An Isotopic Perturbation Lemma Along Periodic Orbits - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2012

An Isotopic Perturbation Lemma Along Periodic Orbits

Résumé

A well-known lemma by John Franks asserts that one obtains any perturbation of the derivative of a diffeomorphism along a periodic orbit by a $C^1$-perturbation of the whole diffeomorphism on a small neighbourhood of the orbit. However, one does not control where the invariant manifolds of the orbit are, after perturbation. We show that if the perturbated derivative is obtained by an isotopy along which some strong stable/unstable manifolds of some dimensions exist, then the Franks perturbation can be done preserving the corresponding stable/unstable semi-local manifolds. This is a general perturbative tool in $C^1$-dynamics that has many consequences. We give simple examples of such consequences, for instance a generic dichotomy between dominated splitting and small stable/unstable angles inside homoclinic classes.
Fichier principal
Vignette du fichier
Afrankslemmaglobalcoord.pdf (582.24 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00769205 , version 1 (29-12-2012)

Identifiants

Citer

Nicolas Gourmelon. An Isotopic Perturbation Lemma Along Periodic Orbits. 2012. ⟨hal-00769205⟩
172 Consultations
73 Téléchargements

Altmetric

Partager

More