Quasilinear Lane-Emden equations with absorption and measure data - Archive ouverte HAL
Article Dans Une Revue Journal de Mathématiques Pures et Appliquées Année : 2013

Quasilinear Lane-Emden equations with absorption and measure data

Résumé

We study the existence of solutions to the equation $-\Gd_pu+g(x,u)=\mu$ when $g(x,.)$ is a nondecreasing function and $\gm$ a measure. We characterize the good measures, i.e. the ones for which the problem as a renormalized solution. We study particularly the cases where $g(x,u)=\abs x^{\beta}\abs u^{q-1}u$ and $g(x,u)=\abs x^{\tau}\rm{sgn }(u)(e^{\tau\abs u^\lambda}-1)$. The results state that a measure is good if it is absolutely continuous with respect to an appropriate Lorentz-Bessel capacities.
Fichier principal
Vignette du fichier
Absorption-3.pdf (266.96 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00768950 , version 1 (26-12-2012)
hal-00768950 , version 2 (15-01-2013)

Identifiants

Citer

Marie-Françoise Bidaut-Véron, Hung Nguyen Quoc, Laurent Veron. Quasilinear Lane-Emden equations with absorption and measure data. Journal de Mathématiques Pures et Appliquées, 2013, 102, pp.315-337. ⟨10.1016/j.matpur.2013.11.011⟩. ⟨hal-00768950v2⟩
141 Consultations
158 Téléchargements

Altmetric

Partager

More