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We study the existence of solutions to the equation -∆ p u + g(x, u) = µ when g(x, .) is a nondecreasing function and µ a measure. We characterize the good measures, i.e. the ones for which the problem has a renormalized solution. We study particularly the cases where g(x, u) = |x| -β |u| q-1 u and g(x, u) = sgn(u)(e τ |u| λ -1). The results state that a measure is good if it is absolutely continuous with respect to an appropriate Lorentz-Bessel capacities.

Introduction

Let Ω ⊂ R N be a bounded domain containing 0 and g : Ω × R → R be a Caratheodory function. We assume that for almost all x ∈ Ω, r → g(x, r) is nondecreasing and odd. In this article we consider the following problem

-∆ p u + g(x, u) = µ in Ω u = 0 in ∂Ω (1.1)
where ∆ p u = div |∇u| p-2 ∇u , (1 < p < N ), is the p-Laplacian and µ a bounded measure.

A measure for which the problem admits a solution, in an appropriate class, is called a good measure. When p = 2 and g(x, u) = g(u) the problem has been considered by Benilan and Brezis [START_REF] Ph | Nonlinear problems related to the Thomas-Fermi equation[END_REF] in the subcritical case that is when any bounded measure is good. They prove that such is the case if N ≥ 3 and g satisfies

∞ 1 g(s)s -N -1 N -2 ds < ∞. (1.2) 
The supercritical case, always with p = 2, has been considered by Baras and Pierre [START_REF] Baras | Singularités éliminables pour des équations semi linéaires[END_REF] when g(u) = |u| q-1 u and q > 1. They prove that the corresponding problem to (1.1 ) admits a solution (always unique in that case) if and only if the measure µ is absolutely continuous with respect to the Bessel capacity C 2,q ′ (q ′ = q/(q -1)). In the case p = 2 it is shown by Bidaut-Véron [START_REF] Bidaut-Veron | Removable singularities and existence for a quasilinear equation with absorption or source term and measure data[END_REF] that if problem (1.1 ) with β = 0 and g(s) = |s| q-1 s (q > p -1 > 0) admits a solution, then µ is absolutely continuous with respect to any capacity C p, q q+1-p +ǫ for any ǫ > 0.

In this article we introduce a new class of Bessel capacities which are modelled on Lorentz spaces L s,q instead of L q spaces. If G α is the Bessel kernel of order α > 0, we denote by L α,s,q (R N ) the Besov space which is the space of functions φ = G α * f for some f ∈ L s,q (R N ) and we set φ α,s,q = f s,q (a norm which is defined by using rearrangements). Then we set C α,s,q (E) = inf{ f s,q : f ≥ 0, G α * f ≥ 1 on E} (1.3) for any Borel set E. We say that a measure µ in Ω is absolutely continuous with respect to the capacity C α,s,q if , ∀E ⊂ Ω, E Borel , C α,s,q (E) = 0 =⇒ |µ| (E) = 0.

(1.4)

We also introduce the Wolff potential of a positive measure µ ∈ M + (R N ) by

W α,s [µ](x) = ∞ 0 µ(B t (x)) t N -αs 1 s-1 dt t (1.5)
if α > 0, 1 < s < α -1 N . When we are dealing with bounded domains Ω ⊂ B R and µ ∈ M + (Ω), it is useful to introduce truncated Wolff potentials.

W R α,s [µ](x) = R 0 µ(B t (x)) t N -αs 1 s-1 dt t (1.6)
We prove the following existence results concerning

-∆ p u + |x| -β g(u) = µ in Ω u = 0 in ∂Ω (1.7)
Theorem 1.1 Assume 1 < p < N , q > p -1 and 0 ≤ β < N and µ is a bounded Radon measure in Ω.

1-If g(s) = |s| q-1 s, then (1.7 ) admits a renormalized solution if µ is absolutely continuous with respect to the capacity C p,

N q N q-(p-1)(N -β)) , q q+1-p . 2-If g satisfies ∞ 1 g(s)s -q-1 ds < ∞ (1.8)
then (1.7 ) admits a renormalized solution if µ is absolutely continuous with respect to the capacity C p, N q N q-(p-1)(N -β)) ,1 . Furthermore, in both case there holds

-cW 2diam (Ω) 1,p [µ -](x) ≤ u(x) ≤ cW 2diam (Ω) 1,p [µ + ](x)
for almost all x ∈ Ω.

(1.9

)
where c is a positive constant depending on p and N .

In order to deal with exponential nonlinearities we introduce for 0 < α < N the fractional maximal operator (resp. the truncated fractional maximal operator), defined for a positive measure µ by

M α [µ](x) = sup t>0 µ(B t (x)) t N -α , resp M α,R [µ](x) = sup 0<t<R µ(B t (x)) t N -α , (1.10) 
and the η-fractional maximal operator (resp. the truncated η-fractional maximal operator)

M η α [µ](x) = sup t>0 µ(B t (x)) t N -α h η (t) , resp M η α,R [µ](x) = sup 0<t<R µ(B t (x)) t N -α h η (t) , (1.11) 
where η ≥ 0 and

h η (t) = (-ln t) -η if 0 < t < 1 2 (ln 2) -η if t ≥ 1 2 (1.12) Theorem 1.2 Assume 1 < p < N , τ > 0 and λ ≥ 1.
Then there exists M > 0 depending on N, p, τ and λ such that if a measure in Ω, µ = µ +µ -can be decomposed as follows

µ + = f 1 + ν 1 and µ -= f 2 + ν 2 , (1.13) 
where

f j ∈ L 1 + (Ω) and ν j ∈ M b + (Ω) (j = 1, 2)
, and if

M (p-1)(λ-1) λ p,2diam (Ω) [ν j ] L ∞ (Ω) < M, (1.14) 
there exists a renormalized solution to

-∆ p u + sign(u) e τ |u| λ -1 = µ in Ω u = 0 in ∂Ω. (1.15)
and satisfies (1.9 ).

Our study is based upon delicate estimates on Wolff potentials and η-fractional maximal operators which are developed in the first part of this paper.

2 Lorentz spaces and capacities

2.1 Lorentz spaces Let (X, Σ, α) be a measured space. If f : X → R is a measurable function, we set S f (t) := {x ∈ X : |f |(x) > t} and λ f (t) = α(S f (t)). The decreasing rearrangement f * of f is defined by f * (t) = inf{s > 0 : λ f (s) ≤ t}.
It is well known that (Φ(f )) * = Φ(f * ) for any continuous and nondecreasing function Φ : R + → R + . We set

f * * (t) = 1 t t 0 f * (τ )dτ ∀t > 0.
and, for 1 ≤ s < ∞ and 1 < q ≤ ∞,

f L s,q =        ∞ 0 t q s (f * * (t)) q dt t 1 q if q < ∞ sup t>0 ess t 1 s f * * (t) if q = ∞ (2.1)
It is known that L s,q (X, α) is a Banach space when endowed with the norm . L s,q . Furthermore there holds (see e.g. [START_REF] Grafakos | Classical Fourier Analysis 2nd[END_REF])

t 1 s f * L q (R + , dt t ) ≤ f L s,q ≤ s s -1 t 1 s f * L q (R + , dt t ) , (2.2) 
the left-hand side inequality being valid only if s > 1. Finally, if f ∈ L s,q (R N ) (with 1 ≤ q, s < ∞ and α being the Lebesgue measure) and if

{ρ n } ⊂ C ∞ c (R N ) is a sequence of mollifiers, f * ρ n → f and (f χ Bn ) * ρ n → f in L s,q (R N )
, where χ Bn is the indicator function of the ball B n centered at the origin of radius n. In particular 

C ∞ c (R N ) is dense in L s,q (R N ).

Wolff potentials, fractional and η-fractional maximal operators

< s < α -1 N , the R-truncated Wolff-potential by W R α,s [µ](x) = R 0 µ(B t (x)) t N -αs 1 s-1 dt t for a.e. x ∈ R N . (2.3)
If h η (t) = min{(-ln t) -η , (ln 2) -η } and 0 < α < N , the truncated η-fractional maximal operator is

M η α,R [µ](x) = sup 0<t<R µ(B t (x)) t N -α h η (t) for a.e. x ∈ R N . (2.4) If R = ∞, we drop it in expressions (2.
3 ) and (2.4 ). In particular

µ(B t (x)) ≤ t N -α h η (t)M η α,R [µ](x). (2.5)
We also define G α the Bessel potential of a measure µ by

G α [µ](x) = R N G α (x -y)dµ(y) ∀x ∈ R N , (2.6) 
where G α is the Bessel kernel of order α in R N .

Definition 2.1 We denote by L α,s,q (R N ) the Besov space the space of functions φ = G α * f for some f ∈ L s,q (R N ) and we set φ α,s,q = f s,q . If we set

C α,s,q (E) = inf{ f s,q : f ≥ 0, G α * f ≥ 1 on E}, (2.7) 
then C α,s,q is a capacity, see [START_REF] Adams | Function Spaces and Potential Theory[END_REF].

Estimates on potentials

In the sequel, we denote by |A| the N-dimensional Lebesgue measure of a measurable set A and, if F, G are functions defined in R N , we set {F > a}

:= {x ∈ R N : F (x) > a}, {G ≤ b} := {x ∈ R N : G(x) ≤ b} and {F > a, G ≤ b} := {F > a} ∩ {G ≤ b}.
The following result is an extension of [14, Th 1.1] Proposition 2.2 Let 0 ≤ η < p -1, 0 < αp < N and r > 0. There exist c 0 > 0 depending on N, α, p, η and ǫ 0 > 0 depending on N, α, p, η, r such that, for all µ ∈ M + (R N ) with

diam(supp(µ)) ≤ r and R ∈ (0, ∞], ǫ ∈ (0, ǫ 0 ], λ > µ(R N ) 1 p-1 l(r, R) there holds, W R α,p [µ] > 3λ, (M η αp,R [µ]) 1 p-1 ≤ ǫλ ≤ c 0 exp -p-1-η 4(p-1) p-1 p-1-η αp ln 2 ǫ -p-1 p-1-η {W R α,p [µ] > λ} .
(2.8)

where l(r, R) = N -αp p-1 min{r, R} -N -αp p-1 -R -N -αp p-1 if R < ∞, l(r, R) = N -αp p-1 r -N -αp p-1 if R = ∞. Furthermore, if η = 0, ǫ 0 is independent of r and (2.8 ) holds for all µ ∈ M + (R N ) with compact support in R N and R ∈ (0, ∞], ǫ ∈ (0, ǫ 0 ], λ > 0.
Proof. Case R = ∞. Let λ > 0; since W α,p [µ] is lower semicontinuous, the set

D λ := {W α,p [µ] > λ}
is open. By Whitney covering lemma, there exists a countable set of closed cubes

{Q i } i such that D λ = ∪ i Q i , o Q i ∩ o Q j = ∅ for i = j and diam(Q i ) ≤ dist (Q i , D c λ ) ≤ 4 diam(Q i ).
Let ǫ > 0 and

F ǫ,λ = W α,p [µ] > 3λ, (M η αp [µ]) 1 
p-1 ≤ ǫλ . We claim that there exist c 0 = c 0 (N, α, p, η) > 0 and ǫ 0 = ǫ 0 (N, α, p, η, r) > 0 such that for any Q ∈ {Q i } i , ǫ ∈ (0, ǫ 0 ] and

λ > µ(R N ) 1 p-1 l(r, ∞) there holds |F ǫ,λ ∩ Q| ≤ c 0 exp - p -1 -η 4(p -1) p-1 p-1-η ǫ -p-1 p-1-η αp ln 2 |Q| .
(2.9)

The first we show that there exists c 1 > 0 depending on N, α, p and η such that for any

Q ∈ {Q i } i there holds F ǫ,λ ∩ Q ⊂ E ǫ,λ ∀ǫ ∈ (0, c 1 ], λ > 0 (2.10)
where

E ǫ,λ = x ∈ Q : W 5 diam(Q) α,p [µ](x) > λ, (M η αp [µ](x)) 1 p-1 ≤ ǫλ . (2.11) Infact, take Q ∈ {Q i } i such that Q ∩ F ǫ,λ = ∅ and let x Q ∈ D c λ such that dist (x Q , Q) ≤ 4 diam(Q) and W α,p [µ](x Q ) ≤ λ. For k ∈ N, r 0 = 5 diam(Q) and x ∈ F ǫ,λ ∩ Q, we have 2 k+1 r0 2 k r0 µ(B t (x)) t N -αp 1 p-1 dt t = A + B where A = 2 k 1+2 k+1 1+2 k r0 2 k r0 µ(B t (x)) t N -αp 1 p-1 dt t and B = 2 k+1 r0 2 k 1+2 k+1 1+2 k r0 µ(B t (x)) t N -αp 1 p-1 dt t . Since µ(B t (x)) ≤ t N -αp h η (t)M η αp [µ](x) ≤ t N -αp h η (t)(ǫλ) p-1 .
(2.12)

Then B ≤ 2 k+1 r0 2 k 1+2 k+1 1+2 k r0 t N -αp h η (t)(ǫλ) p-1 t N -αp 1 p-1 dt t = ǫλ 2 k+1 r0 2 k 1+2 k+1 1+2 k r0 (h η (t)) 1 p-1 dt t
Replacing h η (t) by its value we obtain B ≤ c 2 ǫλ2 -k after a lengthy computation where c 2 depends only on p and η. Since

δ := ( 2 k 2 k +1 ) N -αp p-1 , then 1 -δ ≤ c 3 2 -k where c 3 depends only on N -αp p-1 , thus (1 -δ)A ≤ c 3 2 -k 2 k+1 r0 2 k r0 µ(B t (x)) t N -αp 1 p-1 dt t ≤ c 3 2 -k ǫλ 2 k+1 r0 2 k r0 (h η (t)) 1 p-1 dt t ≤ c 4 2 -k ǫλ,
where c 4 = c 4 (N, α, p, η) > 0. By a change of variables and using that for any x ∈ F ǫ,λ ∩Q and t ∈ [r 0 (1+2 k ), r 0 (1+2 k+1 )],

B 2 k t 1+2 k (x) ⊂ B t (x Q ), we get δA = r0(1+2 k+1 ) r0(1+2 k )   µ(B 2 k t 1+2 k )(x) t N -αp   1 p-1 dt t ≤ r0(1+2 k+1 ) r0(1+2 k ) µ(B t (x Q )) t N -αp 1 p-1 dt t .
Therefore

2 k+1 r0 2 k r0 µ(B t (x)) t N -αp 1 p-1 dt t ≤ c 5 2 -k ǫλ + r0(1+2 k+1 ) r0(1+2 k ) µ(B t (x Q )) t N -αp 1 p-1 dt t ,
with c 5 = c 5 (N, α, p, η) > 0. This implies

∞ r0 µ(B t (x)) t N -αp 1 p-1 dt t ≤ 2c 5 ǫλ + ∞ 2r0 µ(B t (x Q )) t N -αp 1 p-1 dt t ≤ (1 + 2c 5 ǫ)λ, (2.13) since W α,p [µ](x Q ) ≤ λ. If ǫ ∈ (0, c 1 ] with c 1 = (2c 5 ) -1 then ∞ r0 µ(B t (x) t N -αp 1 p-1 dt t ≤ 2λ
which implies (2.10 ). Now, we let λ > µ(R N ) 1 p-1 l(r, ∞). Let B 1 be a ball with radius r such that supp(µ) ⊂ B 1 . We denote B 2 by the ball concentric to B 1 with radius 2r. Since x / ∈ B 2 ,

W α,p [µ](x) = ∞ r µ(B t (x)) t N -αp 1 p-1 dt t ≤ µ(R N ) 1 p-1 l(r, ∞).
Thus, we obtain D λ ⊂ B 2 . In particular,

r 0 = 5 diam(Q) ≤ 20r. Next we set m 0 = max(1,ln(40r)) ln 2 , so that 2 -m r 0 ≤ 2 -1 if m ≥ m 0 . Then for any x ∈ E ǫ,λ r0 
2 -m r0 µ(Bt(x)) t N -αp 1 p-1 dt t ≤ ǫλ r0 2 -m r0 (h η (t)) 1 p-1 dt t ≤ ǫλ 2 -m 0 r0 2 -m r0 (-ln t) -η p-1 dt t + ǫλ r0 2 -m 0 r0 (ln 2) -η p-1 dt t ≤ m 0 ǫλ + (p-1)((m-m0) ln 2) 1-η p-1 p-1-η ǫλ.
For the last inequality we have used

a 1-η p-1 -b 1-η p-1 ≤ (a -b) 1-η p-1 valid for any a ≥ b ≥ 0. Therefore, r0 2 -m r0 µ(B t (x)) t N -αp 1 p-1 dt t ≤ 2(p -1) p -1 -η m 1-η p-1 ǫλ ∀m ∈ N, m > m p-1 p-1-η 0 .
(2.14)

Set

g i (x) = 2 -i+1 r0 2 -i r0 µ(B t (x)) t N -αp 1 p-1 dt t , then W r0 α,p [µ](x) ≤ 2(p -1) p -1 -η m 1-η p-1 ǫλ + W 2 -m r0 α,p [µ](x) ≤ 2(p -1) p -1 -η m 1-η p-1 ǫλ + ∞ i=m+1 g i (x) for all m > m p-1 p-1-η 0 . We deduce that, for β > 0, |E ǫ,λ | ≤ x ∈ Q : ∞ i=m+1 g i (x) > 1 - 2(p -1) p -1 -η m 1-η p-1 ǫ λ ≤ x ∈ Q : ∞ i=m+1 g i (x) > 2 -β(i-m-1) (1 -2 -β ) 1 - 2(p -1) p -1 -η m 1-η p-1 ǫ λ ≤ ∞ i=m+1 x ∈ Q : g i (x) > 2 -β(i-m-1) (1 -2 -β ) 1 - 2(p -1) p -1 -η m 1-η p-1 ǫ λ . (2.15) Next we claim that |{x ∈ Q : g i (x) > s}| ≤ c 6 (N, η) s p-1 2 -iαp |Q| (ǫλ) p-1 . (2.16) 
To see that, we pick x 0 ∈ E ǫ,λ and we use the Chebyshev's inequality

|{x ∈ Q : g i (x) > s}| ≤ 1 s p-1 Q |g i | p-1 dx = 1 s p-1 Q r02 -i+1 r02 -i µ(B t (x)) t N -αp 1 p-1 dt t p-1 dx ≤ 1 s p-1 Q µ(B r02 -i+1 (x)) (r 0 2 -i ) N -αp := A.
Thanks to Fubini's theorem, the last term A of the above inequality can be rewritten as

A = 1 s p-1 1 (r 0 2 -i ) N -αp Q R N χ B r 0 2 -i+1 (x) (y)dµ(y)dx = 1 s p-1 1 (r 0 2 -i ) N -αp Q+B r 0 2 -i+1 (0) Q χ B r 0 2 -i+1 (y) (x)dxdµ(y) ≤ 1 s p-1 1 (r 0 2 -i ) N -αp Q+B r 0 2 -i+1 (0) |B r02 -i+1 (y)| dµ(y) ≤ c 7 (N ) 1 s p-1 2 -iαp r αp 0 µ(Q + B r02 -i+1 (0)) ≤ c 7 (N ) 1 s p-1 2 -iαp r αp 0 µ(B r0(1+2 -i+1 ) (x 0 )), since Q+B r02 -i+1 (0) ⊂ B r0(1+2 -i+1 ) (x 0 ). Using the fact that µ(B t (x 0 )) ≤ (ln 2) -η t N -αp (ǫλ) p-1
for all t > 0 and r 0 = 5 diam(Q), we obtain

A ≤ c 8 (N, η) 1 s p-1 2 -iαp r αp 0 (r 0 (1 + 2 -i+1 )) N -αp (ǫλ) p-1 ≤ c 9 (N, η) 1 s p-1 2 -iαp |Q| (ǫλ) p-1 ,
which is (2.16 ). Consequently, (2.15 ) can be rewritten as

|E ǫ,λ | ≤ ∞ i=m+1 c 6 (N, η) 2 -β(i-m-1) (1 -2 -β ) 1 -2(p-1) p-1-η m 1-η p-1 ǫ λ p-1 2 -iαp (ǫλ) p-1 |Q| ≤ c 6 (N, η)2 -(m+1)αp ǫ 1 -2(p-1) p-1-η m 1-η p-1 ǫ p-1 |Q| 1 -2 -β -p+1 ∞ i=m+1 2 (β(p-1)-αp)(i-m-1) .
(2.17) If we choose β = β(α, p) so that β(p -1)αp < 0, we obtain

|E ǫ,λ | ≤ c 10 2 -mαp ǫ 1 -2(p-1) p-1-η m 1-η p-1 ǫ p-1 |Q| ∀m > m p-1 p-1-η 0 (2.18) where c 10 = c 10 (N, α, p, η) > 0. Put ǫ 0 = min 1 4(p-1) p-1-η m0+1 , c 1 . For any ǫ ∈ (0, ǫ 0 ] we choose m ∈ N such that p -1 -η 2(p -1) p-1 p-1-η 1 ǫ -1 p-1 p-1-η -1 < m ≤ p -1 -η 2(p -1) p-1 p-1-η 1 ǫ -1 p-1 p-1-η . Then ǫ 1 -2(p-1) p-1-η m 1-η p-1 ǫ p-1 ≤ 1 and 2 -mαp ≤ 2 αp-αp( p-1-η 2(p-1) ) p-1 p-1-η ( 1 ǫ -1) p-1 p-1-η ≤ 2 αp exp -αp ln 2 p -1 -η 4(p -1) p-1 p-1-η ǫ -p-1 p-1-η .
Combining these inequalities with (2.18 ) and (2.10 ), we get (2.9 ).

In the case η = 0 we still have for any m ∈ N, λ, ǫ > 0 and

x ∈ E ǫ,λ W r0 α,p [µ](x) ≤ mǫλ + ∞ i=m+1 g i (x)
Accordingly (2.18 ) reads as

|E ǫ,λ | ≤ c 10 2 -mαp ǫ 1 -mǫ p-1 |Q| ∀m ∈ N, λ, ǫ > 0 with mǫ < 1. Put ǫ 0 = min{ 1 2 , c 1 }. For any ǫ ∈ (0, ǫ 0 ] and m ∈ N satisfies ǫ -1 -2 < m ≤ ǫ -1 -1, we finally get from (2.10 ) |F ǫ,λ ∩ Q| ≤ |E ǫ,λ | ≤ c 10 2 2αp exp -αpǫ -1 ln 2 |Q|, (2.19) 
which ends the proof in the case R = ∞.

Case R < ∞. For λ > 0, D λ = {W R α,p > λ} is open. Using again Whitney covering lemma, there exists a countable set of closed cubes

Q := {Q i } such that ∪ i Q i = D λ , o Q i ∩ o Q j = ∅ for i = j and dist (Q i , D c λ ) ≤ 4 diam(Q i ). If Q ∈ Q : is such that diam (Q) > R 8 , there exists a finite number n Q of closed dyadic cubes {P j,Q } nQ j=1 such that ∪ nQ j=1 P j,Q = Q, o P i,Q ∩ o P j,Q = ∅ if i = j and R 16 < diam (P j,Q ) ≤ R 8 . We set Q ′ = Q ∈ Q : diam (Q) ≤ R 8 , Q ′′ = P i,Q : 1 ≤ i ≤ n Q , Q ∈ Q, diam (Q) > R 8 and F = Q ′ ∪ Q ′′ . For ǫ > 0 we denote again F ǫ,λ = W R α,p [µ] > 3λ, (M η αp,R [µ]) 1 p-1 ≤ ǫλ . Let Q ∈ F such that F ǫ,λ ∩ Q = ∅ and r 0 = 5 diam (Q). If dist (D c λ , Q) ≤ 4 diam (Q), that is if there exists x Q ∈ D c λ such that dist (x Q , Q) ≤ 4 diam (Q) and W R α,p [µ](x Q ) ≤ λ,
we find, by the same argument as in the case R = ∞, (2.13 ), that for any

x ∈ F ǫ,λ ∩ Q there holds R r0 µ(B t (x)) t N -αp 1 p-1 dt t ≤ (1 + c 11 ǫ)λ. (2.20) 
where

c 11 = c 11 (N, α, p, η) > 0. If dist (D c λ , Q) > 4 diam (Q), we have R 16 < diam (Q) ≤ R 8 since Q ∈ Q ′′ . Then, for all x ∈ F ǫ,λ ∩ Q, there holds R r0 µ(B t (x)) t N -αp 1 p-1 dt t ≤ R 5R 16 t N -αp (ln 2) -η (ǫλ) p-1 t N -αp 1 p-1 dt t = (ln 2) -η p-1 ln 16 5 ǫλ ≤ 2ǫλ.
(2.21)

Thus, if we take ǫ ∈ (0, c 12 ] with c 12 = min{1, c -1 11 }, we derive

F ǫ,λ ∩ Q ⊂ E ǫ,λ , (2.22) 
where

E ǫ,λ = W r0 α,p [µ] > λ, M η αp,R [µ] 1 p-1 ≤ ǫλ . Furthermore, since x / ∈ B 2 , W R α,p [µ](x) = R min{r,R} µ(B t (x)) t N -αp 1 p-1 dt t ≤ µ(R N ) 1 p-1 l(r, R). Thus, if λ > µ(R N ) 1 p-1 l(r, R) then D λ ⊂ B 2 which implies r 0 = 5 diam(Q) ≤ 20r. The end of the proof is as in the case R = ∞.
In the next result we list a series of equivalent norms concerning Radon measures.

Theorem 2.3 Assume α > 0, 0 < p -1 < q < ∞, 0 < αp < N and 0 < s ≤ ∞. Then there exists a constant c 13 = c 13 (N, α, p, q, s) > 0 such that for any R ∈ (0, ∞] and µ ∈ M + (R N ), there holds

c -1 13 W R α,p [µ] L q,s (R N ) ≤ M αp,R [µ] 1 p-1 L q p-1 , s p-1 (R N ) ≤ c 13 W R α,p [µ] L q,s (R N ) .
(2.23)

For any R > 0, there exists c 14 = c 14 (N, α, p, q, s, R) > 0 such that for any

µ ∈ M + (R N ), c -1 14 W R α,p [µ] L q,s (R N ) ≤ G αp [µ] 1 p-1 L q p-1 , s p-1 (R N ) ≤ c 14 W R α,p [µ] L q,s (R N ) .
(2.24)

In (2.24 ), W R α,p [µ] L q,s (R N ) can be replaced by M αp,R [µ] 1 p-1 L q p-1 , s p-1 (R N )
.

Proof. We denote µ n by χ Bn µ for n ∈ N * .

Step 1 We claim that

W R α,p [µ] L q,s (R N ) ≤ c ′ 13 M αp,R [µ] 1 p-1 L q p-1 , s p-1 (R N ) . (2.25) 
From Proposition 2.2 there exist positive constants c 0 = c 0 (N, α, p), a = a(α, p) and ǫ 0 = ǫ 0 (N, α, p) such that for all n ∈ N * , t > 0, 0 < R ≤ ∞ and 0 < ǫ ≤ ǫ 0 , there holds

W R α,p [µ n ] > 3t, (M η αp,R [µ n ]) 1 p-1 ≤ ǫt ≤ c 0 exp -aǫ -1 {W R α,p [µ n ] > t} .
(2.26)

In the case 0 < s < ∞ and 0 < q < ∞, we have

W R α,p [µ n ] > 3t s q ≤ c 15 exp - s q aǫ -1 {W R α,p [µ n ] > t} s q +c 15 (M η αp,R [µ n ]) 1 p-1 > ǫt s q .
with c 15 = c 15 (N, α, p, q, s) > 0. Multiplying by t s-1 and integrating over (0, ∞), we obtain

∞ 0 t s W R α,p [µ n ] > 3t s q dt t ≤ c 15 exp -s q aǫ -1 ∞ 0 t s {W R α,p [µ n ] > t} s q dt t + c 15 ∞ 0 t s M η αp,R [µ n ] > (ǫt) p-1 s q dt t .
By a change of variable, we derive

3 -s -c 15 exp -s q aǫ -1 ∞ 0 t s {W R α,p [µ n ] > t} s q dt t ≤ c 15 ǫ -s p -1 ∞ 0 t s p-1 M η αp,R [µ n ] > t s q dt t .
We choose ǫ small enough so that 3 -sc 15 exp -s q aǫ -1 > 0, we derive from (2.2 ) and

t 1/s1 f * L s 2 (R, dt t ) = s 1/s2 1 λ 1/s1 f t L s 2 (R, dt t ) for any f ∈ L s1,s2 (R N ) with 0 < s 1 < ∞, 0 < s 2 ≤ ∞ W R α,p [µ n ] L q,s (R N ) ≤ c ′ 13 M αp,R [µ n ] 1 p-1 L q p-1 , s p-1 (R N )
, and (2.25 ) follows by Fatou's lemma. Similarly, we can prove (2.25 ) in the case s = ∞.

Step 2 We claim that

W R α,p [µ] L q,s (R N ) ≥ c ′′ 13 M αp,R [µ] 1 p-1 L q p-1 , s p-1 (R N )
.

(2.27)

For R > 0 we have

W 2R α,p [µ n ](x) = W R α,p [µ n ](x) + 2R R µ n (B t (x)) t N -αp 1 p-1 dt t ≤ W R α,p [µ n ](x) + µ n (B 2R (x)) R N -αp 1 p-1 . (2.28) Thus x : W 2R α,p [µ n ](x) > 2t ≤ x : W R α,p [µ n ](x) > t + x : µ n (B 2R (x)) R N -αp > t p-1 , Consider {z j } m i=1 ⊂ B 2 such that B 2 ⊂ m i=1 B 1 2 (z i ). Thus B 2R (x) ⊂ m i=1 B R 2 (x + Rz i ) for any x ∈ R N and R > 0. Then x : µ n (B 2R (x)) R N -αp > t p-1 ≤ x : m i=1 µ n (B R 2 (x + Rz i )) R N -αp > t p-1 ≤ m i=1 x : µ n (B R 2 (x + Rz i )) R N -αp > 1 m t p-1 ≤ m i=1 x -Rz i : µ n (B R 2 (x)) R N -αp > 1 m t p-1 = m x : µ n (B R 2 (x)) R N -αp > 1 m t p-1 .
Moreover from (2.28 )

µ n (B R 2 (x)) R N -αp 1 p-1 ≤ 2W R α,p [µ n ](x), thus x : µ n (B 2R (x)) R N -αp > t p-1 ≤ m x : W R α,p [µ n ](x) > 1 2m 1 p-1 t .
This leads to

x : W 2R α,p [µ n ](x) > 2t ≤ (m + 1) x : W R α,p [µ n ](x) > 1 2m 1 p-1 t ∀t > 0 This implies W 2R α,p [µ n ] L q p-1 , s p-1 (R N ) ≤ c 16 W R α,p [µ n ] L q p-1 , s p-1 (R N )
.

with c 16 = c 16 (N, α, p, q, s) > 0. By Fatou's lemma, we get

W 2R α,p [µ] L q p-1 , s p-1 (R N ) ≤ c 16 W R α,p [µ] L q p-1 , s p-1 (R N )
.

(2.29)

On the other hand, from the identity in (2.28 ) we derive that for any ρ ∈ (0, R),

W 2R α,p [µ](x) ≥ W 2ρ α,p [µ](x) ≥ c 17 sup 0<ρ≤R µ(B ρ (x)) ρ N -αp 1 p-1
, with c 17 = c 17 (N, α, p) > 0, from which follows

W 2R α,p [µ](x) ≥ c 17 (M αp,R [µ](x)) 1 p-1 .
(2.30)

Combining (2.29 ) and (2.30 ) we obtain (2.27 ) and then (2.23 ). Notice that the estimates are independent of R and thus valid if R = ∞.

Step 3 We claim that (2.24 ) holds. By the previous result we have also

c -1 18 W R αp 2 ,2 [µ] L q p-1 , s p-1 (R N ) ≤ M αp,R [µ] L q p-1 , s p-1 (R N ) ≤ c 18 W R αp 2 ,2 [µ] L q p-1 , s p-1 (R N )
.

(2.31) where c 18 = c 18 (N, α, p, q, s) > 0. For R > 0, the Bessel kernel satisfies[18, V-3-1]

c -1 19 χ BR (x) |x| N -αp ≤ G αp (x) ≤ c 19 χ B R 2 (x) |x| N -αp + c 19 e -|x| 2 ∀x ∈ R N ,
where

c 19 = c 19 (N, α, p, R) > 0. Therefore c -1 19 χ BR |.| N -αp * µ ≤ G αp [µ] ≤ c 19 χ B R 2 |.| N -αp * µ + c 19 e -|.| 2 * µ. (2.32)
By integration by parts, we get

χ BR |.| N -αp * µ(x) = (N -αp)W R αp 2 ,2 [µ](x) + µ(B R (x)) R N -αp ≥ (N -αp)W R αp 2 ,2 [µ](x), which implies c 20 W R αp 2 ,2 [µ] L q p-1 , s p-1 (R N ) ≤ G αp [µ] L q p-1 , s p-1 (R N ) . ( 2 

.33)

where c 20 = c 20 (N, α, p, q, s) > 0. Furthermore e

-|x| 2 ≤ c 21 χ B R 2 e -|.| 2 * µ ≤ c 23 e -|.| 2 * W R αp 2 ,2 [µ]. Using Young inequality, we obtain e -|.| 2 * µ L q p-1 , s p-1 (R N ) ≤ c 23 e -|.| 2 * W R αp 2 ,2 [µ] L q p-1 , s p-1 (R N ) ≤ c 24 W R αp 2 ,2 [µ] L q p-1 , s p-1 (R N ) e -|.| 2 L 1,∞ (R N ) ≤ c 25 W R αp 2 ,2 [µ] L q p-1 , s p-1 (R N )
.

(2.34)

where c 25 = c 25 (N, α, p, R) > 0.

Since by integration by parts there holds as above

χ B R 2 |.| N -αp * µ(x) = (N -αp)W R 2 αp 2 ,2 [µ](x) + 2 N -αp µ(B R 2 (x)) R N -αp ≤ c 26 W R αp 2 ,2 [µ](x),
where c 26 = c 26 (N, α, p) > 0 we obtain

χ BR |.| N -αp * µ L q p-1 , s p-1 (R N ) ≤ c 27 W R αp 2 ,2 [µ] L q p-1 , s p-1 . ( 2 

.35)

where c 27 = c 27 (N, α, p, q, s) > 0. Thus Remark. Proposition 5.1 in [START_REF] Phuc | Quasilinear and Hessian equations of Lane-Emden type[END_REF] is a particular case of the previous result.

G αp [µ] L q p-1 , s p-1 (R N ) ≤ c 28 W R αp 2 ,2 [µ] L q p-1 , s p-1 . ( 2 
Theorem 2.4 Let α > 0, p > 1, 0 ≤ η < p -1, 0 < αp < N and r > 0. Set δ 0 = p-1-η 12(p-1)
p-1 p-1-η αp ln 2. Then there exists c 29 > 0, depending on N , α, p, η and r such that for any R ∈ (0, ∞], δ ∈ (0, δ 0 ), µ ∈ M + (R N ), any ball B 1 ⊂ R N with radius ≤ r and ball B 2 concentric to B 1 with radius double B 1 's radius, there holds

1 |B2| B2 exp δ (W R α,p [µB 1 ](x)) p-1 p-1-η M η αp,R [µB 1 ] 1 p-1-η L ∞ (B 1 ) dx ≤ c 29 δ 0 -δ (2.37)
where µ B1 = χ B1 µ. Furthermore, if η = 0, c 29 is independent of r.

Proof. Let µ ∈ M + (R N ) such that M := M η αp,R [µ B1 ] L ∞ (B1)
< ∞. By Proposition 2.2-

(2.8 ) with µ = µ B1 , there exist c 0 > 0 depending on N, α, p, η and ǫ 0 > 0 depending on N, α, p, η and r such that, for all R ∈ (0, ∞], ǫ ∈ (0,

ǫ 0 ], t > µ B1 (R N ) 1 p-1 l(r ′ , R) where r ′ is radius of B 1 there holds, W R α,p [µ B1 ] > 3t, (M η αp,R [µ B1 ]) 1 p-1 ≤ ǫt ≤ c 0 exp -p-1-η 4(p-1) p-1 p-1-η αp ln 2 ǫ -p-1 p-1-η {W R α,p [µ B1 ] > t} .
(2.38)

Since µ B1 (R N ) 1 p-1 l(r ′ , R) ≤ N -αp p-1 (ln 2) -η p-1 M 1 p-1 , thus in (2.8 ) we can choose ǫ = t -1 M η αp,R [µ B1 ] 1 p-1 L ∞ (R N ) = t -1 M 1 p-1 ∀t > max{ǫ -1 0 , N -αp p -1 (ln 2) -η p-1 }M 1 p-1 and as in the proof of Proposition 2.2, W R α,p [µ B1 ] > t ⊂ B 2 . Then W R α,p [µ B1 ] > 3t ∩ B 2 ≤ c 0 exp -p-1-η 4(p-1) p-1 p-1-η αp ln 2M -1 p-1-η t p-1 p-1-η |B 2 | .
(2.39) This can be written under the form

|{F > t} ∩ B 2 | ≤ |B 2 | χ (0,t0] + c 0 exp (-δ 0 t) |B 2 | χ (t0,∞) (t).
(2.40)

where

F = M -1 p-1-η W R α,p [µ B1 ] p-1 p-1-η and t 0 = 3 max{ǫ -1 0 , N -αp p-1 (ln 2) -η p-1 } p-1 p-1-η .
Take δ ∈ (0, δ 0 ), by Fubini's theorem

B2 exp (δF (x)) dx = δ ∞ 0 exp (δt) |{F > t} ∩ B 2 | dt Thus, B2 exp (δF (x)) dx ≤ δ t0 0 exp (δt) dt |B 2 | + c 0 δ ∞ t0 exp (-(δ 0 -δ) t) dt |B 2 | ≤ (exp (δt 0 ) -1) |B 2 | + c 0 δ δ 0 -δ |B 2 |
which is the desired inequality.

Remark. By the proof of Proposition 2.2, we see that ǫ 0 ≥ c30 max(1,ln 40r) where c 30 = c 30 (N, α, p, η) > 0. Thus, t 0 ≤ c 31 (max(1, ln 40r))

p-1 p-1-η . Therefore c 29 ≤ c 32 exp c 33 (max(1, ln 40r)) p-1 p-1-η
where c 32 and c 33 depend on N, α, p and η.

Approximation of measures

The next result is an extension of a classical result of Feyel and de la Pradelle [START_REF] Feyel | Pradelle: Topologies fines et compactifications associées à certains espaces de Dirichlet[END_REF]. This type of result has been intensively used in the framework of Sobolev spaces since the pioneering work of Baras and Pierre [START_REF] Baras | Singularités éliminables pour des équations semi linéaires[END_REF], but apparently it is new in the case of Bessel-Lorentz spaces. We recall that a sequence of bounded measures {µ n } in Ω converges to some bounded measure µ in Ω in the narrow topology of

M b (Ω) if lim n→∞ Ω φdµ n = Ω φdµ ∀φ ∈ C b (Ω) := C(Ω) ∩ L ∞ (Ω).
(2.41)

Theorem 2.5 Assume Ω is an open subset of R N . Let α > 0, 1 < s < ∞, 1 ≤ q < ∞ and µ ∈ M + (Ω).
If µ is absolutely continuous with respect to C α,s,q in Ω, there exists a nondecreasing sequence {µ n } ⊂ M b + (Ω) ∩ (L α,s,q (R N )) ′ , with compact support in Ω which converges to µ weakly in the sense of measures. Furthermore, if µ ∈ M b + (Ω), then µ n ⇀ µ in the narrow topology.

Proof. Step 1. Assume that µ has compact support. Let φ ∈ L α,s,q (R N ) and φ its C α,s,qquasicontinuous representative. Since µ is abolutely continuous with respect to C α,s,q , we can define the mapping

φ → P (φ) = R N φ+ dµ⌊ Ω
where µ⌊ Ω is the extension of µ by 0 in Ω c . By Fatou's lemma, P is lower semicontinuous on L α,s,q (R N ). Furthermore it is convex and potitively homogeneous of degree 1. If Epi(P ) denotes the epigraph of P , i.e.

Epi(P ) = {(φ, t) ∈ L α,s,q (R N ) × R : t ≥ P (φ)},
it is a closed convex cone. Let ǫ > 0 and φ 0 ∈ C ∞ c , φ 0 ≥ 0. Since (φ 0 , P (φ 0 )ǫ) / ∈ Epi(P ), there exist ℓ ∈ (L α,s,q (R N )) ′ , a and b in R such that a + bt + ℓ(φ) ≤ 0 ∀(φ, t) ∈ Epi(P ), (2.42)

a + b(P (φ 0 ) -ǫ) + ℓ(φ 0 ) > 0.
(2.43) Since (0, 0) ∈ Epi(P ), a ≤ 0. Since (sφ, st) ∈ Epi(P ) for all s > 0, s -1 a + bt + ℓ(φ) ≤ 0, which implies bt + ℓ(φ) ≤ 0 ∀(φ, t) ∈ Epi(P ).

Finally, since (0, 1) ∈ Epi(P ), b ≤ 0. But if b = 0 we would have ℓ(φ) ≤ -a for all φ ∈ L α,s,q (R N ). which would lead to ℓ = 0 and a > 0 from (2.43 ), a contradiction. Therefore b < 0. Then, we put θ(φ) = -ℓ(φ) b and derive that, for any (φ, t) ∈ Epi(P ), there holds θ(φ) ≤ t, and in particular

θ(φ) ≤ P (φ) ∀φ ∈ L α,s,q (R N ). (2.44) Since φ ≤ 0 =⇒ P (φ) = 0, θ is a positive linear functional on L α,s,q (R N ). Furthermore sup φ ∈ C ∞ c (R N ) φ L ∞ ≤ 1 |θ(φ)| = sup φ ∈ C ∞ c (R N ) φ L ∞ ≤ 1 θ(φ) ≤ sup φ ∈ C ∞ c (R N ) φ L ∞ ≤ 1 P (φ) = P (1) = µ(Ω).
By the Riesz representation theorem, there exists σ ∈ M + (R N ) such that

θ(φ) = R N φdσ ∀φ ∈ C ∞ c (R N ).
(2.45) Inequality (2.44 ) implies 0 ≤ σ ≤ µ⌊ Ω . Thus supp(σ) ⊂ supp(µ⌊ Ω ) = supp(µ) and σ vanishes on Borel subsets of C α,s,q capacity zero, as µ does it, besides (2.45 ) also values for all φ ∈ C ∞ (R N ) . From (2.43 ), we have

R N φ0 dσ = θ(φ 0 ) > P (φ 0 ) -ǫ + a b ≥ R N φ0 dµ⌊ Ω -ǫ. This implies 0 ≤ R N φ0 d(µ⌊ Ω -σ) ≤ ǫ. (2.46) It remains to prove that σ ∈ (L α,s,q (R N )) ′ . For all f ∈ C ∞ c (R N ), f ≥ 0, there holds R N G α [f ]dσ = θ(G α [f ]) ≤ θ (L α,s,q (R N )) ′ G α [f ] L α,s,q (R N ) , (2.47) since θ = -b -1 ℓ and ℓ ∈ (L α,s,q (R N )) ′ . Now, given f ∈ L s,q (R N ), f ≥ 0 and a sequence of molifiers {ρ n }, (χ Bn f ) * ρ n ∈ C ∞ c (R N ) and (χ Bn f ) * ρ n → f in L s,q (R N )
, where χ Bn is the indicator function of the ball B n centered at the origin of radius n. Furthermore, there is a subsequence

{n k } such that lim n k →∞ G α [(χ Bn k f ) * ρ n k ](x) → G α [f ](x), C α,
s,q -quasi everywhere. Using Fatou's lemma and lower semicontinuity of the norm

R N G α [f ]dσ ≤ lim inf n k →∞ R N G α [(χ Bn k f ) * ρ n k ]dσ ≤ lim inf n k →∞ θ (L α,s,q (R N )) ′ G α [(χ Bn k f ) * ρ n k ] L α,s,q (R N ) ≤ θ (L α,s,q (R N )) ′ G α [f ] L α,s,q (R N ) .

Therefore (2.47 ) also holds for all

f ∈ L s,q (R N ), f ≥ 0. Consequently σ ∈ M b + (R N ) ∩ (L α,s,q (R N )) ′ satisfies R N G α [f ]dσ ≤ θ (L α,s,q (R N )) ′ G α [f ] L α,s,q (R N ) ∀f ∈ L s,q (R N ). (2.48) 
Step 2. We assume that µ has no longer compact support. Set

Ω n = {x ∈ Ω : dist (x, Ω c ) ≥ n -1 , |x| ≤ n}, then Ω n ⊂ Ω n ⊂ Ω n+1 ⊂ Ω for n ≥ n 0 such that Ω n0 = ∅. Let {φ n } ⊂ C ∞ c (R N ) be an increasing sequence such that 0 ≤ φ n ≤ 1, φ n = 1 in a neighborhood of Ω n and supp(φ n ) ⊂ Ω n+1 . and let ν n = φ n µ. For n ≥ n 0 there is σ n ∈ M b + (R N ) ∩ (L α,s,q (R N )) ′ with 0 ≤ σ n ≤ ν n and 1 n > Ω φ n d(ν n -σ n ) ≥ Ωn d(ν n -σ n ) = Ωn d(µ -σ n ).
We set µ n = sup{σ 1 , σ 2 , ..., σ n }, then {µ n } is nondecreasing and supp(µ n ) ⊂ Ω n+1 , and

µ n ∈ M b + (R N ) ∩ (L α,s,q (R N )) ′ . Finally, let φ ∈ C c (Ω) and m ∈ N * such that supp(φ) ⊂ Ω m . For all n ≥ m, we have Ω φdµ n - Ω φdµ ≤ Ωn d(µ -µ n ) φ L ∞ (R N ) ≤ 1 n φ L ∞ (R N ) .
Thus µ n ⇀ µ weakly in the sense of measures.

Step 3.

Assume that µ ∈ M b + (Ω). Then µ n (Ω) ≤ µ(Ω). Thus µ n (Ω) = µ n (Ω n0 ) + ∞ k=n0 µ n (Ω k+1 \ Ω k )
Since the sequence {µ n } is nondecreasing and lim k→∞ µ n (Ω k+1 \ Ω k ) = µ(Ω k+1 \ Ω k )by the previous construction, we obtain by monotone convergence

lim n→∞ µ n (Ω) = µ(Ω n0 ) + ∞ k=n0 µ(Ω k+1 \ Ω k ) = µ(Ω) Next we consider φ ∈ C b (Ω) := C(Ω) ∩ L ∞ (Ω), then Ω φdµ n - Ω φdµ ≤ Ω d(µ -µ n ) φ L ∞ (Ω) ≤ (µ(Ω) -µ n (Ω)) φ L ∞ (Ω) → 0.
Thus µ n ⇀ µ in the narrow topology of measures.

As a consequence of Theorem 2.5 and Theorem 2.3 we obtain the following.

Theorem 2.6 Let p -1 < s 1 < ∞, p -1 < s 2 ≤ ∞, 0 < αp < N , R > 0 and µ ∈ M + (Ω).
If µ is absolutely continuous with respect to the capacity C αp, s 1

s 1 -p+1 , s 2 
s 2 -p+1 , there exists a nondecreasing sequence {µ n } ⊂ M + (Ω) with compact support in Ω which converges to µ in the weak sense of measures and such that W R α,p [µ n ] ∈ L s1,s2 (R N ), for all n. Furthermore, if µ ∈ M b + (Ω), µ n converges to to µ in the narrow topology.

Proof. By Theorem 2.5 there exists a nondecreasing sequence {µ n } of nonnegative measures with compact support in Ω, all elements of (L αp, s 1

s 1 -p+1 , s 2 s 2 -p+1 (R N )) ′ , which converges weakly to µ. If µ ∈ M b + (Ω)
, the convergence holds in the narrow topology. Noting that for a positive measure σ in R N ,

G αp [σ] ∈ L s 1 p-1 , s 2 p-1 (R N ) ⇐⇒ σ ∈ (L αp, s 1 s 1 -p+1 , s 2 s 2 -p+1 (R N )) ′ , it implies G αp [µ n ] ∈ L s 1 p-1 , s 2 p-1 (R N ). Then, by Theorem 2.3, W R α,p [µ n ] ∈ L s1,s2 (R N ).
3 Renormalized solutions

Classical results

Although the notion of renormalized solutions is becoming more and more present in the theory of quasilinear equations with measure data, it has not yet acquainted a popularity which could avoid us to present some of its main aspects. Let Ω be a bounded domain in R N . If µ ∈ M b (Ω), we denote by µ + and µ -respectively its positive and negative part. We denote by M 0 (Ω) the space of measures in Ω which are absolutely continuous with respect to the c Ω 1,p -capacity defined on a compact set K ⊂ Ω by

c Ω 1,p (K) = inf Ω |∇φ| p dx : φ ≥ χ K , φ ∈ C ∞ c (Ω) . (3.1) 
We also denote M s (Ω) the space of measures in Ω with support on a set of zero c Ω 1,p -capacity. Classically, any µ ∈ M b (Ω) can be written in a unique way under the form µ = µ 0 + µ s where µ 0 ∈ M 0 (Ω) ∩ M b (Ω) and µ s ∈ M s (Ω). We recall that any µ 0 ∈ M 0 (Ω) ∩ M b (Ω) can be written under the form µ 0 = fdiv g where f ∈ L 1 (Ω) and g ∈ L p ′ (Ω).

For k > 0 and s ∈ R we set T k (s) = max{min{s, k}, -k}. We recall that if u is a measurable function defined and finite a.e. in Ω, such that T k (u) ∈ W 1,p 0 (Ω) for any k > 0, there exists a measurable function v : Ω → R N such that ∇T k (u) = χ |u|≤k v a.e. in Ω and for all k > 0. We define the gradient ∇u of u by v = ∇u. We recall the definition of a renormalized solution given in [START_REF] Maso | Prignet: Renormalized solutions of elliptic equations with general measure data[END_REF].

Definition 3.1 Let µ = µ 0 + µ s ∈ M b (Ω).
A measurable function u defined in Ω and finite a.e. is called a renormalized solution of

-∆ p u = µ in Ω u = 0 on ∂Ω, (3.2) 
if T k (u) ∈ W 1,p 0 (Ω) for any k > 0, |∇u| p-1 ∈ L r (Ω) for any 0 < r < N N -1 , and u has the property that for any k > 0 there exist λ + k , λ - k ∈ M b + (Ω) ∩ M 0 (Ω), respectively concentrated on the sets u = k and u = -k, with the property that λ + k ⇀ µ + s , λ - k ⇀ µ - s in the narrow topology of measures, such that

{|u|<k} |∇u| p-2 ∇u∇φ dx = {|u|<k} φdµ 0 + Ω φdλ + k - Ω φdλ - k , (3.3) 
for every φ ∈ W 1,p 0 (Ω) ∩ L ∞ (Ω). Remark. If u is a renormalized solution of problem (3.2 ) and µ ∈ M b + (Ω), then u ≥ 0 in Ω. Indeed, taking k > m > 0 and φ = T m (max{-u, 0}), then 0 ≤ φ ≤ m and we have

{|u|<k} |∇u| p-2 ∇u∇φdx = {|u|<k} T m (max{-u, 0})dµ 0 + Ω T m (max{-u, 0})dλ + k - Ω T m (max{-u, 0})dλ - k ≥ -mλ - k (Ω). -∆ p u n = f n + µ n + ω in Ω u n = 0 on ∂Ω, (3.5) 
then, up to a subsequence, u n converges to a renormalized solution of

-∆ p u = f + µ + ω in Ω u = 0 on ∂Ω. (3.6) Proof. We write ω = h -div g + ω + s -ω - s and µ = h -div g + µ + s -µ - s , with h, h ∈ L 1 (Ω), g, g ∈ (L p ′ (Ω)) N , h, g, µ +
s and µ - s with support in a compact set K ⊂ Ω. For n 0 large enough, ρ n * h, ρ n * g, ρ n * µ + s and ρ n * µ - s have also their support in a fixed compact subset

Proof. We claim the there exist renormalized solutions u 1 and u 2 of problem (3.2 ) with respective data µ + and µ -such that -u 2 ≤ u ≤ u 1 a.e. in Ω.

(3.12)

We use the decomposition

µ = µ + -µ -= (µ + 0 -µ + s ) -(µ - 0 -µ - s ). We put u k = T k (u), µ k = 1 {|u|<k} µ 0 + λ + k -λ - k , v k = 1 {|u|<k} µ + 0 + λ + k . Since µ k ∈ M 0 (Ω), problem (3.
2 ) with data µ k admits a unique renormalized solution (see [START_REF] Boccardo | Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data[END_REF]), and clearly u k is such a solution. Since v k ∈ M 0 (Ω), problem (3.2 ) with data v k admits a unique solution u k,1 which is furthermore nonnegative and dominates u k a.e. in Ω. From Corollary 3.5, {u k,1 } converges a.e. in Ω to a renormalized solution u 1 of (3.2 ) with data µ + and u ≤ u 1 . Similarly -u ≤ u 2 where u 2 is a renormalized solution of (3.2 ) with µ -. Finally, from [17, Th 6.9] there is a positive constant c dependent only on p and N such that We consider the problem

u 1 (x) ≤ cW 2 diam Ω 1,p [µ + ] and u 2 (x) ≤ cW 2 diam Ω 1,p [µ -] a.
-∆ p u + g • u = µ in Ω u = 0 in ∂Ω. (4.14)
where µ ∈ M b (Ω). We say that u is a renormalized solution of problem (4.14 ) if g•u ∈ L 1 (Ω) and u is a renormalized solution of 

-∆ p u = µ -g • u in Ω u = 0 in ∂Ω. ( 4 
-∆ p u + g • u = µ 1 -µ 2 in Ω u = 0 in ∂Ω, (4.16 
) 

such that -cW 2 diam Ω 1,p [µ 2 ](x) ≤ u(x) ≤ cW 2 diam Ω 1,p [µ 1 ](x) a.e. in Ω. ( 4 
i ∈ M b + (Ω) (i = 1, 2)
, with compact support in Ω. Then there exist renormalized solutions u, u i , v i (i = 1, 2) to problems

-∆ p u + g • u = λ 1 -λ 2 in Ω u = 0 in ∂Ω, (4.18) 
-∆ p u i + g • u i = λ i in Ω u i = 0 in ∂Ω, (4.19) 
-∆ p v i = λ i in Ω v i = 0 in ∂Ω, (4.20) 
such that -cW

2 diam (Ω) 1,p [λ 2 ](x) ≤ -v 2 (x) ≤ -u 2 (x) ≤ u(x) ≤ u 1 (x) ≤ v 1 (x) ≤ cW 2 diam (Ω) 1,p [λ 1 ](x) (4.21)
for almost all x ∈ Ω.

Proof. Let {ρ n } be a sequence of mollifiers, λ i,n = ρ n * λ i , (i = 1, 2) and λ n = λ 1,nλ 2,n . Then, for n 0 large enough, λ 1,n , λ 2,n and λ n are bounded with compact support in Ω for all n ≥ n 0 and by minimization there exist unique solutions in W 1,p 0 (Ω) to problems

-∆ p u n + g • u n = λ n in Ω u n = 0 in ∂Ω, -∆ p u i,n + g • u i,n = λ i,n in Ω u i,n = 0 in ∂Ω, -∆ p v i,n = λ i,n in Ω v i,n = 0 in ∂Ω,
and by the maximum principle, they satisfy

-v 2,n (x) ≤ -u 2,n (x) ≤ u n (x) ≤ u 1,n (x) ≤ v 1,n (x), ∀x ∈ Ω, ∀n ≥ n 0 . (4.22) 
Since the λ i are bounded measure and g ∈ L ∞ (Ω × R) the the sequences of measures {λ 

2 diam (Ω) 1,p [λ 2 ](x) ≤ -u 2 (x) ≤ u(x) ≤ u 1 (x) ≤ cW 2 diam (Ω) 1,p [λ 1 ](x) (4.23)
for almost all x ∈ Ω. Furthermore, if ω i , θ i have the same properties as the λ i and satisfy ω i ≤ λ i ≤ θ i , one can find solutions u ωi and u θi of problems (4.19 ) with right-hand respective side ω i and θ i , such that u ωi ≤ u i ≤ u θi .

Proof. From Lemma 4.2 there exist renormalized solutions u n , u i,n to problems

-∆ p u n + T n (g • u n ) = λ 1 -λ 2 in Ω u n = 0 on ∂Ω, and 
-∆ p u i,n + T n (g • u i,n ) = λ i in Ω u i,n = 0
on ∂Ω, i = 1, 2, and they satisfy -cW 

2 diam (Ω) 1,p [λ 2 ](x) ≤ -u 2,n (x) ≤ u n (x) ≤ u 1,n (x) ≤ cW 2 diam (Ω) 1,p [λ 1 ](x). (4.24) Since Ω |g • u n |dx ≤ λ 1 (Ω) + λ 2 (Ω) and Ω g • u i,n dx ≤ λ i (Ω)
2 diam (Ω) 1,p [λ i ] ∈ L 1 (Ω)
we derive from (4.24 ) and the dominated convergence theorem that T n (g We are now in situation of proving the two theorems stated in the introduction.

• u n ) → g • u and T n (g • u i,n ) → g • u i in L 1 (Ω).
Proof of Theorem 1.1. 1-Since µ is absolutely continuous with respect to the capacity C p, N q N q-(p-1)(N -β)) , q q+1-p , µ + and µ -share this property. By Theorem 2.6 there exist two nondecreasing sequences {µ 1,n } and {µ 2,n } of positive bounded measures with compact support in Ω which converge to µ + and µ -respectively and which have the property that W R 1,p [µ i,n ] ∈ L N q N -β ,q (R N ), for i = 1, 2 and all n ∈ N. Furthermore, with R = diam (Ω), 2-Because µ is absolutely continuous with respect to the capacity C p, N q N q-(p-1)(N -β)) ,1 , so are µ + and µ -. Applying again Theorem 2.6 there exist two nondecreasing sequences {µ 1,n } and {µ 2,n } of positive bounded measures with compact support in Ω which converge to µ + and µ -respectively and such that W R 1,p [µ i,n ] ∈ L N q N -β ,1 (R N ). This implies in particular W 2R 1,p [µ i,n ](.) * (t) ≤ c 35 t -N -β N q , ∀t > 0, (4.27)

R N 1 |x| β W 2R 1,p [µ i,n ](x) q dx ≤ ∞ 0 1 |.| β * (t) W 2R 1,p [µ i,n ] * (t) q dt ≤ c 34 ∞ 0 1 t β N W 2R 1,p [µ i,n ] * (t) q dt ≤ c 34 W 2R 1,p [µ i,n ] q L N q N -β ,q (R N ) < ∞.
for some c 34 > 0. Therefore, by Theorem 2.3 Proof of Theorem 1.2. Again we take R = diam (Ω). Let {Ω n } n∈N * be an increasing sequence of compact subsets of Ω such that ∪ n Ω n = Ω. We define µ i,n = T n (χ Ωn f i ) + χ Ωn ν i (i = 1, 2). Then {µ 1,n } and {µ 2,n } are nondecreasing sequences of elements of M b + (Ω) with compact support, and they converge to µ + and µ -respectively. Since for any ǫ > 0 there exists c ǫ > 0 such that 

W 2R 1,p [µ i,n ] λ ≤ c ǫ n λ p-1 + (1 + ǫ) W 2R 1,p [ν i ] λ , ( 4 

If

  D is either a bounded domain or whole R N , we denote by M(D) (resp M b (D)) the set of Radon measure (resp. bounded Radon measures) in D. Their positive cones are M + (D) and M b + (D) respectively. If 0 < R ≤ ∞ and µ ∈ M + (D) and R ≥ diam (D), we define, for α > 0 and 1

  e. in Ω.(3.13) This implies the claim.4 Equations with absorption terms 4.1 The general caseLet g : Ω×R → R be a Caratheodory function such that the map s → g(x, s) is nondecreasing and odd for almost all x ∈ Ω. If U is a function defined in Ω we define the function g • U in Ω by g • U (x) = g(x, U (x)) for almost all x ∈ Ω.

. 15 ) 4 . 1

 1541 Theorem Let µ i ∈ M b + (Ω), i = 1, 2, such that there exists a nondecreasing sequences {µ i,n } ⊂ M b + (Ω), with compact support in Ω, converging to µ i and g • cW 2 diam Ω 1,p [µ i,n ] ∈ L 1 (Ω)with the same constant c as in Theorem 3.8. Then there exists a renormalized solution of

4. 2

 2 Proofs of Theorem 1.1 and Theorem 1.2

( 4 .

 4 26)Then the result follows from Theorem 4.1.

Ω 1 |x|

 1 β g cW 2R 1,p [µ i,n ](x) dx ≤ 0 depends on |Ω|, c 35 c, N , β, q. Thus the result follows by Theorem 4.1.

2 ( 1 L∈ L 1 (∈ L 1 (

 2111 .29) a.e. in Ω, it followsexp τ cW 2R 1,p [µ i,n ] λ ≤ c ǫ,n,c exp τ (1 + ǫ) cW 2R 1,p [ν i ] ǫ > 0 small enough so that τ (1 + ǫ)c λ < p ln ∞ (Ω).Hence, by Theorem 2.4 with η = (p-1)(λ-1)λ , exp τ (1 + ǫ) cW 2R 1,p [ν i ]λ Ω). We conclude by Theorem 4.1.

  .17) Lemma 4.2 Assume g belongs to L ∞ (Ω × R), besides the assumptions of Theorem 4.1. Let λ

  1,nλ 2,ng • u n }, {λ i,ng • u i,n } and {λ i,n } are uniformly bounded in M b (Ω). Thus, by Theorem 3.2 there exists a subsequence, still denoted by the index n such that {u n }, {u i,n }, {v i,n } converge a.e. in Ω to functions {u}, {u i }, {v i } (i = 1, 2) when n → ∞. Furthermore g • u n and g • u i,n converge in L 1 (Ω) to g • u and g • u i respectively. By Corollary 3.4, we can assume that {u}, {u i }, {v i } are renormalized solutions of (4.18 )-(4.20 ), and by Theorem 3.8, v i (x) ≤ cW 2 diam Ω Let g satisfy the assumptions of Theorem 4.1 and let λ i ∈ M b + (Ω) (i = 1, 2), with compact support in Ω such that g • cW of Theorem 4.1. Then there exist renormalized solutions u, u i of the problems (4.18 )-(4.19 ) such that

	Lemma 4.3 -cW	1,p	[λ i ](x), a.e. in Ω. Thus we get (4.21 ).

  and-∆ p u i,n + g • u i,n = µ i,n in Ω u i,n = 0 on ∂Ω, i = 1, 2 such that {u i,n } is nonnegative and nondecreasing and they satisfy[µ 2 ](x) ≤ -u 2,n (x) ≤ u n (x) ≤ u 1,n (x) ≤ cW .e. in Ω.As in the proof of Lemma 4.3, up to the same subsequence, {u 1,n }, {u 2,n } and {u n } converge to u 1 , u 2 and u a.e. in Ω. Since g • u i,n are nondecreasing, positive andΩ g • u i,n dx ≤ µ i,n (Ω) ≤ µ i (Ω), it follows from the monotone convergence theorem that {g • u i,n } converges to g • u i in L 1 (Ω). Finally, since |g • u n | ≤ g • u 1 + g • u 2 , {g • u n } converges to g • u in L 1(Ω) by dominated convergence. Applying Corollary 3.5 we conclude that u is a renormalized solution of (4.16 ) and that (4.17 ) holds.

		2,n	in Ω		
		u n = 0	on ∂Ω,		
	-cW	2 diam (Ω) 1,p	2 diam (Ω) 1,p	[µ 1 ](x)	(4.25)

It follows from Theorem 3.3 that u and u i are respective solutions of (4.18 ),

(4.19 )

. The last statement follows from the same assertion in Lemma 4.2.

Proof of Theorem 4.1. From Lemma 4.3, there exist renormalized solutions u n , u i,n to problems -∆ p u n + g • u n = µ 1,nµ a

diam (Ω) 1,p [λ i ] ∈ L 1 (Ω), where c is the constant

Thus

Letting k → ∞, we obtain ∇T m (max{-u, 0}) = 0 a.e., thus u ≥ 0 a.e. in Ω.

We recall the following important results, see [10, Then, up to a subsequence, {u n } converges a.e. to a solution u of -∆ p u = µ in the sense of distributions in Ω, for some measure µ ∈ M b (Ω), and for every k > 0, k -1

for some M > 0.

Finally we recall the following fundamental stability result of [START_REF] Maso | Prignet: Renormalized solutions of elliptic equations with general measure data[END_REF] which extends Theorem 3.2.

n and u n is a renormalized solution of (3.4 ), then, up to a subsequence, u n converges a.e. to a renormalized solution u of (3.2 ). Furthermore

Applications

We present below some interesting consequences of the above theorem.

of Ω for all n ≥ n 0 . Moreover ρ n * h → h and ρ n * g → g in L 1 (Ω) and (L p ′ (Ω)) N respectively and div ρ n * g → div g in W -1,p ′ (Ω). Therefore

is an approximation of the measure f + µ + ω in the sense of Theorem 3.3. This implies the claim.

Then, up to a subsequence, u n converges a.e. to a renormalized solution of problem

The proof of this results is based upon two lemmas

Proof. Following [START_REF] Maso | On the integral representation of certain local functionals[END_REF] and the proof of [7, Th 2.1], one can write µ = φγ where γ ∈ W -1,p ′ (Ω)∩ M b + (Ω) and 0 ≤ φ ∈ L 1 (Ω, γ). Let {Ω n } n∈N * be an increasing sequence of compact subsets of Ω such that ∪ n Ω n = Ω. We define the sequence of measures {ν n } n∈N * by

Let {ρ n } be a sequence of mollifiers. We may assume that

(3.10)

Proof. Since {µ n } is nondecreasing {µ n 0 } and {µ n s } share this property. Clearly

. Set μ0 0 = 0 and μn 0 = µ n 0µ n-1 0 for n ∈ N * . From Lemma 3.6, for any n ∈ N, one can find

Therefore the convergence statements and (3.10 ) hold.

Proof of Corollary 3.5. We set ν n = f n + µ n,1µ n,2 + ϑ n and ν = f + µ 1µ 2 + ϑ. From Lemma 3.7 we can write

and the convergence properties listed in the lemma hold. Therefore we can apply Theorem 3.3 and the conclusion follows.

In the next result we prove the main pointwise estimates on renormalized solutions.