Solutions of fractional equations involving sources and Radon measures - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2012

Solutions of fractional equations involving sources and Radon measures

Huyuan Chen
  • Fonction : Auteur
  • PersonId : 934383

Résumé

In this note, we consider the existence of positive solution to \begin{equation}\label{eq1.1} \left\{ \arraycolsep=1pt \begin{array}{lll} (-\Delta)^\alpha u=u_+^p+\sigma\lambda,\quad & \rm{in}\quad\Omega,\\[2mm] u=0,\quad & \rm{in}\quad \R^N\setminus\Omega, \end{array} \right. \end{equation} where $p>0$, $\sigma>0$, $\lambda\in\mathfrak{M}(\Omega)$ with $\mathfrak{M}(\Omega)$ the Radon measure space, $u_+(x)=\max\{u(x),0\}$ and $\Omega$ is an open, smooth domain of $\R^N\ (N\ge2)$. Here $(-\Delta)^\alpha $ is defined, for a regular function $u$, as follow \begin{equation}\label{eq 1} (-\Delta)^\alpha u(x)=(\alpha-1)\lim_{r\to0}\int_{\R^N\setminus B_r}\frac{u(x+y)-u(x)}{|y|^{N+2\alpha}}dy, \end{equation} where $\alpha\in(0,1)$, $B_r$ denotes the ball centered at origin with radius $r$ in $\R^N$. This definition is called \emph{in the principle value sense.}
Fichier principal
Vignette du fichier
Radon_3.pdf (213.91 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00766824 , version 1 (19-12-2012)

Identifiants

  • HAL Id : hal-00766824 , version 1

Citer

Huyuan Chen, Laurent Veron. Solutions of fractional equations involving sources and Radon measures. 2012. ⟨hal-00766824⟩
153 Consultations
215 Téléchargements

Partager

More