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1 Introduction

In this note, we consider the existence of positive solution to

{

(−∆)αu = up
+ + σλ, in Ω,

u = 0, in RN \ Ω,
(1.1)

where p > 0, σ > 0, λ ∈ M(Ω) with M(Ω) the Radon measure space,
u+(x) = max{u(x), 0} and Ω is an open, smooth domain of RN (N ≥ 2).
Here (−∆)α is defined, for a regular function u, as follow

(−∆)αu(x) = (α− 1) lim
r→0

∫

RN\Br

u(x+ y)− u(x)

|y|N+2α
dy, (1.2)

where α ∈ (0, 1), Br denotes the ball centered at origin with radius r in RN .
This definition is called in the principle value sense.

The original problem of (1.3) is

{

−∆u = up
+ + σλ, in Ω,

u = 0, in ∂Ω,
(1.3)

which has been studied intensively, see [1, 2, 4, 19] for the existence.
In the study of elliptic equations involving Measures, the Green’s func-

tions plays an important role. Motivated by the construction of the Green’s
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function for laplacian case, we first also consider the fundamental solution
for fractional laplacian. We denote

Γ(x) =
C(N,α)

|x|N−2α
, x ∈ R

N \ {0}, (1.4)

where C(N,α) > 0 is such that

(−∆)αΓ = δ0

in the distribution sense. Also Γ is a fundamental solution to

(−∆)αu(x) = 0, x ∈ R
N \ {0}.

in the principle value sense. The fundamental solution is the essential part
to construct Green’s function for fractional laplacian operator, that is,

Definition 1.1 Let Ω be an open and smooth domain of RN(N ≥ 2). We
denote

G(x, y) = Γ(x− y)− φ(x, y), (x, y) ∈ R
N × R

N \D, (1.5)

where Γ is defined by (1.4), D = {(z, z) ∈ Ω×Ω} and φ(x, y) is the solution
of

{

(−∆)αzφ(x, z) = 0, z ∈ Ω,

φ(x, z) = Γ(x− z), z ∈ RN \ Ω,
(1.6)

for any given x ∈ Ω, and
{

(−∆)αzφ(z, y) = 0, z ∈ Ω,

φ(z, y) = Γ(z − y), z ∈ RN \ Ω.
(1.7)

for any given y ∈ Ω.
We call G(x, y) as Green’s function to fractional laplacian with order α.

It is known that the study of the elliptic equations involving measures
is based on the estimate of singular behavior of Green’s Function, see [7].
Equation (1.3) involving Radon measure, of course, it isn’t supposed to find
a regular solution. So one type of weak solution of (1.3) by Green’s function
for fractional laplacian operator should be introduced, there is,

Definition 1.2 Let Ω be an open and smooth domain of RN (N ≥ 2) and
G(x, y) is the Green function. We say u is a weak solution of (1.3) if u is
measurable, G(up

+) ∈ L1(Ω) and

u(x) = G(up
+)(x) + σG(λ)(x), a.e. x ∈ R

N, (1.8)

where G(up
+)(x) =

∫

Ω
G(x, y)up

+(y)dy and G(λ)(x) =
∫

Ω
G(x, y)dλ(y) with G

being the Green’s function for fractional laplacian by Definition 1.1.
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We remark here that by the definition of G, we know that for x ∈ RN \ Ω,
G(x, y) = 0 for any y ∈ RN , so

u(x) = 0 x ∈ R
N \ Ω.

Now we are in the position to show the main existence theorem for frac-
tional equation involving measures and reaction source.

Theorem 1.1 Assume that Ω is an open, bounded and smooth domain of
R

N and λ ∈ M(Ω). Then there exists a solution u ∈ L1
loc(Ω) of (1.3) in the

sense of (1.8) for σ small enough, if one of the following assumptions:

(i) 1 < p < N
N−2α

;

(ii) p > N
N−2α

and λ+ ∈ Lq(Ω) with q ≥ Np
N+2αp

;

(iii) p = N
N−2α

and λ+ ∈ Lq(Ω) with q > 1.

Moreover, if
∫

Ω
G(x, y)dλ(y) ≥ 0 a.e. x ∈ Ω, then u ≥ 0.

Remark 1.1 We see that

Np

2αp+N
= 1 if p =

N

N− 2α
.

In particular, for λ = δx0 the Dirac mass at point x0 ∈ Ω, Theorem 1.1
gives the existence of solution to (1.3) for p ∈ (1, N

N−2α
). In what follows,

our interest is to study the asymptotic behavior of the solution near x0 with
p ∈ (0, N

N−2α
). The asymptotic behavior the solution for p ∈ (1, N

N−2α
) is

stated as:

Theorem 1.2 Suppose that Ω is an open, bounded and smooth domain of
RN (N ≥ 2) and 1 < p < N

N−2α
. There exists σ0 > 0 such that for any

σ ∈ (0, σ0], problem (1.3) with λ = δx0 admits a solution u, satisfying that

for x ∈ Bǫ(x0) with ǫ ∈ (0, min{d(x0),1}
4

),
(i) if p > 2α

N−2α
, then

σpC−1

|x− x0|(N−2α)p−2α
< u(x)−

σC(N,α)

|x− x0|N−2α
≤

σpC

|x− x0|(N−2α)p−2α
,

(ii) if p = 2α
N−2α

, then

−σpC−1 ln(|x− x0|) < u(x)−
σC(N,α)

|x− x0|N−2α
≤ −σpC ln(|x− x0|),

3



(iii) if p < 2α
N−2α

, then

σpC−1 < u(x)−
σC(N,α)

|x− x0|N−2α
≤ σpC,

where C(N,α) is from (1.4) and C > 1 depends on N , α, Ω and x0.

For the case p ∈ (0, 1), we have

Theorem 1.3 Suppose that Ω is an open, bounded and smooth domain of
RN (N ≥ 2) and 0 < p < 1. Then for any σ > 0, problem (1.3) with λ = δx0

admits a solution u, satisfying that for x ∈ Bǫ(x0) with ǫ ∈ (0, min{d(x0),1}
4

),
(i) if p > 2α

N−2α
, then

σpC−1

|x− x0|(N−2α)p−2α
< u(x)−

σC(N,α)

|x− x0|N−2α
≤

(C + σ1−p)
p

1−p

|x− x0|(N−2α)p−2α
,

(ii) if p = 2α
N−2α

, then

−σpC−1 ln(|x− x0|) < u(x)−
σC(N,α)

|x− x0|N−2α
≤ −(C + σ1−p)

p

1−p ln(|x− x0|),

(iii) if p < 2α
N−2α

, then

σpC−1 < u(x)−
σC(N,α)

|x− x0|N−2α
≤ (C + σ1−p)

p

1−p ,

where C(N,α) is from (1.4) and C > 1 depends on N , α, Ω and x0.

For p = 1, problem (1.3) may non-exist solution for any σ > 0. See an
example with α = 1, let λ1 and φ1 be the first eigenvalue and eigenfunction
respectively of

{

−∆u = λ1u+, in Ω,

u(x) = 0, on ∂Ω.

In particular, for some type domain Ω, it could be λ1 ≤ 1. If

{

−∆u = u+ + σδx0 , in Ω,

u(x) = 0, on ∂Ω.

admits a positive solution, then by computing directly, we have that

φ1(x0) = 0,
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which is impossible with φ1 > 0 in Ω.
So in the case of p = 1, we consider the following problem

{

(−∆)αu = Λu+ + σλ, in Ω,

u(x) = 0, in RN \ Ω.
(1.9)

where Λ > 0.
Similarly to Definition 1.2, we say that u is a weak solution of (1.9) if

u ∈ L1(Ω) and

u(x) = ΛG(up
+)(x) + σG(λ)(x), a.e. x ∈ R

N. (1.10)

Theorem 1.4 Assume that Ω is an open, smooth and bounded domain of
RN . Then there exists Λ0 > 0 such that for any Λ ∈ (0,Λ0), for any σ > 0,
problem (1.9) with λ = δx0 admits a solution u, satisfying that for x ∈ Bǫ(x0)

with ǫ ∈ (0, min{d(x0),1}
4

),
(i) if 2α

N−2α
< 1, then

σΛC−1

|x− x0|N−4α
< u(x)−

σC(N,α)

|x− x0|N−2α
≤

σΛC

|x− x0|N−4α
,

(ii) if 2α
N−2α

= 1, then

−σΛC−1 ln(|x− x0|) < u(x)−
σC(N,α)

|x− x0|N−2α
≤ −σΛC ln(|x− x0|),

(iii) if 2α
N−2α

> 1, then

σΛC−1 < u(x)−
σC(N,α)

|x− x0|N−2α
≤ σΛC,

where C(N,α) is from (1.4) and C > 1 depends on N , α, Ω and x0.
Moreover, the solution is unique.

In the Theorem 1.2 and Theorem 1.4, the singular estimate is more pre-
cisely stated than

u(x) =
σC(N,α)

|x− x0|N−2α
(1 + o(1)).

This article is organized as follows. In section §2 we present some prelimi-
naries to the Green’s function. Section §3 is devoted to obtain the existence of
solution to (1.3) with general convex reaction sources by Conjugate method.
In section §4 we prove Theorem 1.1 by applying the results of Section §3.
Finally, Theorem 1.2 is shown in section §5.
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2 Green’s function for Fractional Laplacian

In this section, we consider the properties of Green’s function for fractional
laplacian operator. Motivated by local operator ∆, the Green’s function with
order α could be used to solve the Dirichlet type problem involving fractional
laplacian. And its representation formula using Green’s function is stated as:

Theorem 2.1 Assume that Ω is an open and smooth domain of RN , f ∈ S,
where S is the Schwartz space of rapidly decaying C∞ functions in R

N and
the Green function G is defined by (1.5).
Then

u(x) =

∫

Ω

G(x, y)f(y)dy (2.1)

is the solution of
{

(−∆)αu = f in Ω,

u = 0 in R
N \ Ω.

(2.2)

In order to prove Theorem 2.1, let’s study first about the fundamental
solution Γ.

Lemma 2.1 Let f ∈ S. Then

u(x) = Γ ∗ f =

∫

RN

Γ(x− y)f(y)dy

is the solution of
(−∆)αu = f in R

N. (2.3)

Proof. In fact, From Proposition 3.3 in [10], for (−∆)α defined (1.2) and
u ∈ S

(−∆)αu = F−1(|ξ|2αFu) in R
N.

Then we obtain that

u(x) = F−1( 1
|ξ|2α

F(f))

= F−1( 1
|ξ|2α

) ∗ f
(2.4)

We first claim that

Γ(x) = F−1(
1

|ξ|2α
). (2.5)

Assume (2.5) holds at this moment, then (2.4) turns to be

u = Γ ∗ f.
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Now we prove (2.5). To this end, we start defining the heat kernel, for
α ∈ (0, 1) and x ∈ RN , as

H(x, t) =

∫

RN

e2πx·ξ−t|ξ|2αdξ (2.6)

and denote

K(x) = C

∫ ∞

0

H(x, t)dt, (2.7)

where C > 0 will choose later.
Step 1. To prove there exists C > 0 in (2.7) such that

K = F−1(
1

|ξ|2α
).

Indeed, letting ξ ∈ RN \ {0} and changing variables x = x̃
|ξ|

and z = |ξ|z̃ and

t = t̃
|ξ|2α

, for simplicity, still denoting z̃, t̃ and x̃ by z, t and x,

F(K)(ξ) =

∫

RN

e−2πiξ·x

∫ ∞

0

∫

RN

e2πx·z−t|z|2αdzdtdx

=
1

|ξ|2α

∫

RN

e−2πi~eξ·x

∫ ∞

0

∫

RN

e2πx·z−t|z|2αdzdtdx

where ~eξ =
ξ
|ξ|
.

Denote C(~eξ) =
∫

RN e−2πi~eξ·x
∫∞

0

∫

RN e2πx·z−t|z|2αdzdtdx. We claim first
that for |~ex| = |~ey| = 1,

C(~ex) = C(~ey).

In fact, there exists a matrix A with |A| = 1 such that ~ex = A~ey, and then
by changing variable, we have the claim. Now we can let ~eξ = (1, 0, · · · , 0)
and then

C(~eξ) =

∫

RN

e−2πix1

∫ ∞

0

∫

RN

e2πx·z−t|z|2αdzdtdx > 0.

Step 2. To prove
K = Γ.

For x ∈ RN \ {0}, by changing variables ξ̃ = |x|ξ and t̃ = t
|x|2α

K(x) =

∫ ∞

0

∫

RN

e2πx·ξ−t|ξ|2αdξdt

=
1

|x|N−2α

∫ ∞

0

∫

RN

e2π~ex·ξ̃−t|ξ̃|2αdξ̃dt̃,
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where ~ex = x
|x|
. Denote

C̃x =

∫ ∞

0

∫

RN

e2π~ex·ξ̃−t|ξ̃|2αdξ̃dt̃.

Similarly to step 1, C̃x is some positive constant independent of x. By choose
C(N,α) = C̃x in (1.4), then K = Γ. And we finish the proof. �

Remark 2.1 From Lemma 2.1, the fundamental solution Γ could be seen as

(−∆)αΓ(·) = δ0, (2.8)

in the distribution sense.

Proof of Theorem 2.1. Since Ω is smooth and f ∈ S. For x ∈ Ω,

(−∆)αΓ(x− y) = 0, y ∈ R
N \ Ω.

For u defined by (2.1) and x ∈ Ω,

(−∆)αu(x) = (α− 1) lim
r→0

∫

RN\Br

∫

Ω
G(x+ z, y)f(y)dy −

∫

Ω
G(x, y)f(y)dy

|z|N+2α
dz

=

∫

Ω

(−∆)αxG(x, y)f(y)dy

=

∫

Ω

(−∆)αΓ(x− y)f(y)dy −

∫

Ω

(−∆)αxφ(x, y)f(y)dy

=

∫

RN

(−∆)αΓ(x− y)f(y)dy

= f(x),

the last equality used Remark 2.1. �

Remark 2.2 From Theorem1.1, the Green’s function is the solution of

{

(−∆)αG(x, ·) = δx, in the distribution sense,

G(x, y) = 0, y ∈ R
N \ Ω,

(2.9)

for any x ∈ Ω.

Remark 2.3 It is well-known that it is studied in many papers, such as [7,
6], for singular behavior of Green’s Function expressed by transition density
which is equivalent to Definition 1.1, by remark 2.2.
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Theorem 2.2 Assume that Ω is an open and smooth domain of RN and
d(x) = dist(x,RN \Ω) for x ∈ Ω. Then there exists C > 1 dependent of N,α
such that

C−1min{ 1
|x−y|N−2α ,

dα(x)dα(y)
|x−y|N

} ≤ G(x, y)

≤ Cmin{ 1
|x−y|N−2α ,

dα(x)dα(y)
|x−y|N

}
(2.10)

for (x, y) ∈ Ω× Ω \D with D defined in Definition 1.1, and

G(x, y)G(y, z)

G(x, z)
≤ C

|x− z|N−2α

|x− y|N−2α|y − z|N−2α
, (2.11)

for (x, y), (y, z), (x, z) ∈ Ω× Ω \D.

Proof. The inequality (2.10) and (2.11) see Corollary 1.3 and Theorem 1.6
(3G Theorem), respectively, in [7]. �

Theorem 2.3 Assume that Ω is an open and smooth domain of RN . Then

0 < φ(x, y) < C(N,α)min{d(x)2α−N , d(y)2α−N} (2.12)

for (x, y) ∈ Ω× Ω, and

G(x, y) = 0, if x ∈ R
N \ Ω or y ∈ R

N \ Ω.

Moreover,
G(x, y) = G(y, x), x, y ∈ Ω, x 6= y. (2.13)

Proof. We divide the proof into several steps.
Step 1: Prove that fixed x ∈ Ω, φ(x, y) < C(N,α)

d(x)N−2α for any y ∈ Ω. If not,
there exits a point y0 ∈ Ω such that

φ(x, y0) = max
y∈Ω

φ(x, y) ≥
C(N,α)

d(x)N−2α
.

Therefore, we have

(−∆)αyφ(x, y0) = (α− 1)

∫

RN

φ(x, y0 + z)− φ(x, y0)

|z|N+2α
dz > 0

which contradicts (−∆)αyφ(x, y0) = 0, obtained by the definition of φ.

Similarly, we have φ(x, y) < C(N,α)
d(y)N−2α .
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Step 2: We prove that φ(x, y) > 0 in (Ω×Ω). If not, there exists (x0, y0) ∈
Ω× Ω such that φ(x0, y0) ≤ 0. Then there exists ȳ ∈ Ω such that φ(x0, ȳ) =
miny∈Ω φ(x0, y) ≤ 0. Therefore,

(−∆)αyφ(x0, ȳ) = (α− 1)

∫

RN

φ(x0, ȳ + z)− φ(x0, ȳ)

|z|N+2α
dz < 0,

which contradicts (−∆)αyφ(x0, y0) = 0, obtained by the definition of φ.
Step 3: We prove (2.13), in fact, by the fact of

Γ(x− z) = Γ(z − x), z 6= x, (2.14)

we just have to prove that

φ(x, z) = φ(z, x).

In fact, put (2.14) into (1.6) and (1.7) with x = y. Then we have that

φ(x, z) = φ(z, x),

for any z ∈ RN . And we finish the proof. �

3 Equations with general reaction sources

In this section, we study the existence results to equations with general re-
action sources, that is,

{

(−∆)αu = j(x, u) + λ, in Ω,

u(x) = 0, in RN \ Ω,
(3.1)

where Ω is open and smooth domain in RN .
Let Kn = Ωn ∩ B̄Rn

, where BRn
is the ball centered at the original with

radius Rn > 1, Rn strictly to n and Rn → +∞ as n → +∞, and Ωn = {x ∈
Ω, dist(x, ∂Ω) ≤ 1

Rn
}. Then

∀n ≥ 0, |Kn| < ∞,
⋃

n≥1

Kn = Ω.

We call following assumption as Conjugate-Condition

(i) r → j(x, r) is nondecreasing, convex and lower semi-continuous for a.e.
x ∈ Ω;
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(ii) j(x, 0) = 0, a.e. in Ω;

The conjugate function j∗, defined by

j∗(x, r) = sup
a∈R

(ra− j(x, r)).

Then j∗ satisfies Conjugate-Condition. For simplicity,

j(u)(x) =

{

j(x, u(x)), if u(x) < ∞,

limr→∞ j(x, u), if u(x) = ∞
(3.2)

and j∗(u) is similarly defined.
We denote

G(h)(x) =

∫

Ω

G(x, y)h(y)dy,

where G(x, y) is a Green’s function in Ω. By (2.13),

G
∗(h)(y) =

∫

Ω

G(x, y)h(x)dx = G(h)(y).

In particular,

f(x) =

∫

Ω

G(x, y)dλ(y). (3.3)

We also denote
L∞
c+(Ω) = L∞

c (Ω) ∩ L+(R
N),

where L∞
c (Ω) = {ξ : RN → R, supp(ξ) ⊂ Kn, n big enough and ess sup |ξ| <

+∞} and L+(R
N) is the space of nonnegative measurable functions.

Being given C ≥ 1 and h ∈ L∞
c+(Ω), we denote

FC(h) =











∫

Ω
j∗( Ch

G(h)
)G(h)dµ, if h

G(h)
< +∞ a.e.

and j∗( Ch
G(h)

)G(h) ∈ L1(Ω),

+∞, if not.

(3.4)

with the convention F (h) = FC(h) if C = 1, h
G(h)

= 0 if h = G(h) = 0, and
uh = 0 if h = 0 and u = ∞.

We put
X = {h ∈ L∞

c+(Ω) : F (h) < ∞} (3.5)

and
X̂ = {h ∈ L∞

c+(Ω) : ∃C > 1 s.t. FC(h) < ∞}.

11



Theorem 3.1 Assume that f ≥ 0 is measurable. Then (3.1) admits a solu-
tion in the sense of

{

(i) u ∈ L+(Ω), u(x) = N(j(u))(x) + f(x), a.e in RN,

(ii) uh ∈ L1(RN), ∀h ∈ X̂,
(3.6)

if and only if
∫

Ω

fhdµ ≤ F (h), ∀h ∈ X̂. (3.7)

Proof. We first prove ′′ =⇒′′.
Multiplying (4.2) by h ∈ L∞

c+ and integrating over Ω implies that

∫

Ω

fhdx =

∫

Ω

(u−G(j(u)))hdx

=

∫

Ω

(uh− j(u)G(h))dx

=

∫

Ω

[u
h

G(h)
− j(u)]G(h))dx

≤

∫

Ω

j∗(
h

G(h)
)G(h)dx

= F (h).

Now we prove that ′′ ⇐=′′.
We denote that

Gm(h) =

∫

Ω

min{χKm
(x)χKm

(y)G(x, y), m}h(y)dy, m ∈ N

and
fn(x) = min{χKn

(x)f(x), n}, m ∈ N.

Fix m, we define that











(i) u0 = µf0,

(ii)∀n ≥ 0 βn = inf{χKn
j′(un), n}

(iii)un+1 = µGm(unβn − j∗(βn)) + µfn,

(3.8)

where µ ∈ [0, 1], m,n ∈ N. In fact, un and βn depend on n and µ, so we note
un = u(n,m, µ) and βn = β(n,m, µ).

Then for any n ≥ 1 m ≥ 0 and µ ∈ (0, 1),

un ≤ un+1, βn ≤ βn+1 (3.9)
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and m → u(n,m, µ), µ → u(n,m, µ) are increasing strictly for n fixed.
Step 1. Now we prove that for any n, m and µ ∈ (0, 1),

∫

Ω

unhdx ≤
µ

1− µ
F (h), h ∈ X̂. (3.10)

Claim 1. For any h ∈ X̂, there exists C ∈ (1, 1
µ
) such that FC(h) < ∞.

Then there exists φn ∈ L∞
c (Ω) is the solution of

φn = max{
1

C
βnGm(φn), h}. (3.11)

We assume Claim 1 is right at this moment, and we continue to prove
(3.10). We observe that φn ∈ L∞

c (Ω) and

FC(φn) ≤

∫

Ω

j∗(
max{βnGm(φn), Ch}

G(φn)
)G(φn)dx.

Since j∗ is increasing, then

FC(φn) ≤

∫

Ω

max{j∗(
βnGm(φn)

G(φn)
), j∗(

Ch

G(φn)
)}G(φn)dx.

By using the fact of G ≥ Gm, φn ≥ h and j∗(ar) ≤ aj∗(r), a ∈ [0, 1],

FC(φn)≤
∫

Ω
max{j∗(βn)Gm(φn), j

∗( Ch
G(h)

)G(h)}dx

≤
∫

Ω
j∗(βn)Gm(φn)dx+ FC(h).

(3.12)

Since Gm(φn) ≤ m|BRm
|‖φn‖L∞, then j∗(βn) ≤ unβn ∈ L∞

0 (Ω).
Multiplying (3.8)part (iii) by φn and integrating over Ω implies that

∫

Ω

un+1φn = µ

∫

Ω

[unβn − j∗(βn)]Gm(φn)dx+ µ

∫

Ω

fnφndx

by (3.7) ≤ µ

∫

Ω

[unβn − j∗(βn)]Gm(φn)dx+ µFC(φn)

by (3.12) ≤ µ

∫

Ω

unβnGm(φn)dx+ µFC(h)

≤ µC

∫

Ω

unφndx+ µFC(h)

≤ µC

∫

Ω

un+1φndx+ µFC(h),

that is,
∫

Ω

un+1φndx ≤
µ

1− µC
,

13



and make C → 1 to get our results.
Step 2 convergence. By Monotone and step 1, we have that

un → u(m,µ) as n → +∞,

fn → f as n → +∞

and

unβn − j∗(βn) → u(m, λ)j′(u(m, λ))− j∗(j′(u(m, λ)))

= j(u(m, λ)) as n → +∞.

We see that u(m,µ) = µGm(j(u(m,µ)))(x) + f(x) a.e in Ω, then make m →
+∞, u(m,µ) → uµ such that uµ ≥ 0 measurable, uµh ∈ L1(Ω) for any h ∈ X̂

and
uµ = µG(j(uµ))(x) + f(x) a.e. in Ω.

This implies, in particular,

∫

Ω

uµhdx = µ

∫

Ω

j(uµ)G(h)dx+ µ

∫

Ω

fhdx, h ∈ X̂.

For C > 1 such that FC(h) < ∞, then

µ

∫

Ω

uµ(
Ch

G(h)
− j(uµ)G(h)dx = (µC − 1)

∫

Ω

uµhdx+ µ

∫

Ω

fhdx,

and consequently
∫

Ω

uµhdx ≤
µ

Cµ− 1
FC(h). (3.13)

Put µ → 1, by monotone of µ → uµ and (3.13), then there exists u ≥ 0
measurable such that uh ∈ L1(Ω) and u is the solution of (4.2).
Proof of Claim 1. For n and m fixed, let

Anϕ = βnGmϕ,

with rn spectral radius and we assume, at this moment, that

rn < C where C independent of n. (3.14)

We see that

(CI − An)
−1 =

∑

i≥0

C−(i+1)Ai
n in L2(Ω),

14



so there exists ϕ̂ ∈ L2(Ω), such that ϕ̂ ≥ 0 and

ϕ̂ =
1

C
Anϕ̂+ h.

Then ϕ̂ ∈ L∞0(Ω), h, βn ∈ C0∞(Ω) and

‖Gm(ϕ)‖L∞ ≤ m

∫

Km

ϕdx ≤ m|Km|
1/2‖φ‖L2.

Let v0 = h, vi+1 = sup( 1
C
Anvi, h), then for any i,

vi ≤ vi+1 ≤ ϕ̂,

then there exists vn such that

vi → vn as i → +∞

and vn is the solution of (3.11).
Finally, we prove (3.14) by inductive method, that rn−1 < C implies

rn < C. The spectral radius r(β) = r(βGm) is continuous and increasing with
respect to β. So if rn ≥ C, there exists β∗ ∈ L∞

0 (Ω) such that βn−1 ≤ β∗ ≤ βn

and r(β∗) = C. So there exists v ∈ L∞
0 (Ω) and v ∈ X̂,

Cv

Gv
≤

Cv

Gmv
≤ β∗ ≤ j′(un).

Let
u∗ = µGm(unβ∗ − j∗(β∗)) + µf (3.15)

and multiply (3.15) by v, we have

∫

Ω
u∗v= µ

∫

Ω
GK(unβ∗ − j∗(β∗))(x)v(y)dxdy + µ

∫

Ω
fnv

≤ Cµ
∫

Ω
uv − µ

∫

Ω
j∗(β∗(x)))GK(v)(y)dxdy + µFC(v),

(3.16)

where GK(h)(x) =
∫

Ω
χK(x)χK(y)G(x, y)h(y)dy. For FC(v), we have

FC(v) =
∫

Ω
j∗( Cv

G(v)
)G(v)dx

≤
∫

Ω
j∗( Cv

GK(v)
)GK(v)dx.

(3.17)

Then (3.16) and (3.17) imply that

∫

Ω

u∗v ≤ µC

∫

Ω

unv,

15



combining u∗ ≥ un, we have that
∫

Ω

u∗vdx = 0. (3.18)

Let K = {x ∈ Ω, v(x) > 0}, then by (3.18), we have
∫

K

u∗ = 0,

which, combining (3.15) and f ≥ 0, implies that

0 ≥ µ

∫

K

dx

∫

K

χK(x)χK(y)G(x, y)[un(y)β∗(y)− j∗(β∗)(y)]dy.

By the fact of βn−1 ≤ β∗ ≤ βn,

K ⊂ {x ∈ Ω, β∗(x) > 0} ⊂ {x ∈ Ω, un(y)β∗(y)− j∗(β∗)(y) > 0},

which implies that
G(x, y) = 0 a.e. K×K,

then GK(v) = 0 in K implies that v ≡ 0, that is impossible. And we finish
the proof. �

For f changing signs, we assume that there exists a measurable function
v such that

(i) v ∈ L1(Kn) and N(·, ·)j(v) ∈ L1(Kn,Ω) for all n ∈ N;

(ii) v(x) ≤ N(j(v))(x) + f(x) a.e. in Ω.

If j : Ω × R → (−∞,∞] measurable function satisfies Conjugate condi-
tion. Denote

j∗v(x, r) = sup
a≥v(x)

ra− j(x, a)

X̂v = {h ∈ L∞
c (Ω) : ∃C > 1 s.t. j∗v(

Ch

G(h)
)G(h) ∈ L1(Ω)}

Corollary 3.1 Assume that f is measurable. Then
{

(i) u ≥ v, u(x) = G(j(u))(x) + f(x), x ∈ Ω,

(ii) uh ∈ L1(Ω), ∀h ∈ X̂v

(3.19)

admits a solution, if and only if
∫

Ω

fhdx ≤

∫

Ω

j∗v(
h

G(h)
)G(h)dx, ∀h ∈ X̂v. (3.20)
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Proof. Let w = u− v, f̃(x) = f(x) +G(j(v))(x)− v(x), j̃(x, r) = j(x, r +
v(x)) − j(x, v(x)) if j(x, v(x)) < ∞ and j̃(x, r) = ∞, if j(x, v(x)) = ∞ and
r ≥ 0.
Step 1. (3.19) is equivalent to

{

(i) w ≥ 0, w(x) = G(j̃(u))(x) + f̃(x), x ∈ Ω,

(ii) wh ∈ L1(Ω), ∀h ∈ X̂,
(3.21)

where

X̂ = {h ∈ L∞
c (Ω) : ∃C > 1 s.t. j̃∗(

Ch

G(h)
)G(h) ∈ L1(Ω)}

We have that f̃ ≥ 0 by condition of v. Now we have to show

X̂ = X̂v.

By directly computation, we have that

j̃∗(x, r) = j∗(x, r)− rv(x) + j(x, v(x)).

So

j̃∗(
Ch

G(h)
)G(h) = j∗v

Ch

G(h)
)G(h)− Chv + j(x, v(x))G(h),

combining that hv ∈ L1(Ω) and j(x, v(x))G(h) ∈ L1(Ω), then X̂ = X̂v.
Step 2. (3.20) is equivalent to

∫

Ω

f̃hdx ≤

∫

Ω

j̃∗(
h

G(h)
)G(h)dx, ∀h ∈ X̂.

In fact, the equivalence derives from

∫

Ω

f̃hdx =

∫

Ω

fhdx+

∫

Ω

[G(j(v))(x)− v(x)]hdx

and
∫

Ω

j̃∗(
h

G(h)
)G(h)dx =

∫

Ω

j∗v (
h

G(h)
)G(h)dx+

∫

Ω

[G(j(v))(x)− v(x)]hdx.

Now we applying Theorem 3.1 to obtain our corollary. �
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4 Proof of Theorem 1.1

In this section, we do the existence of solution to
{

(−∆)αu = up
+ + σλ, in Ω,

u(x) = 0, in RN \ Ω.
(4.1)

where p > 1, σ > 0 and λ ∈ M(Ω).

Corollary 4.1 Assume that p > 1 λ ∈ M(Ω) and σ > 0, G(λ) ∈  L1(Ω).
Denote v(x) = min{G(λ)(x), 0}. Then there exists u ∈ L1

loc(Ω) such that
G(up

+) ∈ L1
loc(Ω) and (4.1) holds in the weak sense of











u(x) ≥ v(x), x ∈ Ω,

u(x) = G(up
+)(x) +G(λ)(x), x ∈ Ω,

uh ∈ L1(Ω), h ∈ X

(4.2)

if and only if

σ

∫

Ω

G(h)dλ ≤
p− 1

pp′

∫

Ω

hp′

G(h)p′−1
dx, h ∈ X, (4.3)

where p′ = p
p−1

and X is defined by (3.5).

Proof. We are going to use Corollary 3.1 in this proof. In Corollary 3.1,
X = X̂ and

j∗(r) =

{

p−1

pp′
rp

′
, if r ≥ 0,

+∞, if r < 0.

By v(x) = min{G(λ)(x), 0} ≤ 0, then we have j∗v = j∗. We note here that
X̂v = X.

We claim that (3.20) is equivalent to (4.3). In fact, for h ∈ X,
∫

Ω

fhdx =

∫

Ω

∫

Ω

G(x, y)h(x)dλ(y)dx =

∫

Ω

G(h)dλ.

Then applied Corollary 3.1 to get our results. �

We note here that Theorem 3.1, Corollary 3.1 and Corollary 4.1 hold for
any open smooth domain, including Ω = RN . In what follows we do the
application of Corollary 4.1 in bounded domain. And the embedding:

G : Ls(Ω) → Lr(Ω)

plays an important roles. The precise statement is following:
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Lemma 4.1 Assume that Ω is open, smooth and bounded.
(i) if

1

s
<

2α

N
,

then there exists some C > 0 such that

‖G(h)‖L∞(Ω) ≤ C‖h‖Ls(Ω); (4.4)

(ii) if
1

s
≤

1

r
+

2α

N
and s > 1,

then there exists some C > 0 such that

‖G(h)‖Lr(Ω) ≤ C‖h‖Ls(Ω). (4.5)

(iii) if

1 <
1

r
+

2α

N
,

then there exists some C > 0 such that

‖G(h)‖Lr(Ω) ≤ C‖h‖L1(Ω). (4.6)

Proof. Step 1. To prove (4.4). By the Hölder inequality and (2.12), for
any x ∈ Ω,

‖

∫

Ω

G(x, y)h(y)dy‖L∞(Ω) ≤ ‖(

∫

Ω

G(x, y)s
′

dy)
1
s′ (

∫

Ω

|h(y)|sdy)
1
s‖L∞(Ω)

≤ C‖h‖Ls(Ω)‖

∫

Ω

1

|x− y|(N−2α)s′
dy‖L∞(Ω),

where s′ = s
s−1

. Since 1
s
< 2α

N
, that implies (N − 2α)s′ < N , and Ω is

bounded, then

∫

Ω

1

|x− y|(N−2α)s′
dy ≤

∫

BD(x)

1

|x− y|(N−2α)s′
dy

= C

∫ D

0

rN−1−(N−2α)s′dr

< CDN−(N−2α)s′ ,

where D = sup{|x− y| : x, y ∈ Ω}. Then (4.4) holds.
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Step 2. To prove (4.5) and (4.6) with r ≤ s. We have

{

∫

Ω

[

∫

Ω

G(x, y)h(y)dy]rdx}
1
r = {

∫

RN

[

∫

RN

G(x, y)h(y)dy]rdx}
1
r

≤ C{

∫

RN

[

∫

RN

h(y)χΩ(x)χΩ(y)

|x− y|N−2α
dy]rdx}

1
r

≤ C{

∫

RN

[

∫

RN

h(x− y)χΩ(x)χΩ(x− y)

|y|N−2α
dy]rdx}

1
r ;

by using the integral Minkowski’s inequality, then,

{

∫

Ω

[

∫

Ω

G(x, y)h(y)dy]rdx}
1
r

≤ C

∫

RN

[

∫

RN

hr(x− y)χΩ(x)χΩ(x− y)

|y|(N−2α)r
dx]

1
rdy

≤ C

∫

Ω̃

[

∫

RN

hr(x− y)χΩ(x)χΩ(x− y)dx]
1
r

1

|y|N−2α
dy

≤ C‖h‖Lr(Ω) ≤ C‖h‖Ls(Ω),

where Ω̃ = {x− y, x, y ∈ Ω} is bounded.
Step 3. To prove (4.5) and (4.6) with r > s ≥ 1 and 1

s
≤ 1

r
+ 2α

N
. We claim

that if r > s and 1
r∗

= 1
s
− 2α

N
, the mapping h → G(h) is of weak-type (s, r∗),

in the sense that

|{x ∈ Ω : |G(h)| > t}| ≤ (As,r∗
‖h‖Ls(Ω)

t
)r

∗

, h ∈ Ls(Ω), all t > 0, (4.7)

where constant As,r∗ > 0.
Denote for ν > 0,

G0(x, y) =

{

G(x, y), if |x− y| ≤ ν,

0, if |x− y| > ν.

and G∞(x, y) = G(x, y)−G0(x, y). Then we have that

|{x ∈ Ω : |G(h)| > 2t}| ≤ |{x ∈ Ω : |G0(h)| > t}|+ |{x ∈ Ω : |G∞(h)| > t}|,

where G0(h) and G∞(h) is defined similarly to G(h).
By Step 2 and the integral Minkowski’s inequality, we have

|{x ∈ Ω : |G0(h)| > t}| ≤
‖G0(h)‖

s
Ls(Ω)

ts
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≤
‖
∫

Ω
χBν(x−y)Γ(x− y)|h(y)|dy‖sLs(Ω)

ts

≤
[
∫

Ω
(
∫

Ω
|h(x− y)|sdx)

1
sΓ(y)χBν

(y)dy]s

ts

≤
‖h‖sLs(Ω)‖ΓχBν

‖sL1(Ω)

ts

and

‖ΓχBν
‖L1(Ω)

∫

Bν

|x|−N+2αdx = C1ν
2α.

On the other hand,

‖G∞(h)‖L∞(Ω) ≤ ‖

∫

Ω

χBc
ν
(x− y)Γ(x− y)|h(y)|dy‖L∞(Ω)

≤ (

∫

Ω

|h(y)|sdy)
1
s‖(

∫

Ω

χBc
ν
(x− y)Γ(x− y)s

′

dy)
1
s′ ‖L∞(Ω)

≤ ‖h‖Ls(Ω)‖ΓχBc
ν
‖Ls′(RN ),

where s′ = s
s−1

if s > 1, if not, s′ = ∞.
Since

‖ΓχBc
ν
‖Ls′ (RN ) = [

∫

RN\Bν

|x|(−N+2α)s′dx]
1
s′ = C2ν

2α−N
s ,

by choosing ν = ( t
C2‖h‖Ls(Ω)

)
1

2α−N
s , then

‖G∞(h)‖L∞(Ω) ≤ t,

that means
|{x ∈ Ω : |G∞(h)| > t}| = 0.

With this ν, we have that

|{x ∈ Ω : |G(h)| > 2t}| ≤ C1

‖h‖sLs(Ω)ν
2sα

ts
≤ C3(

‖h‖Ls(Ω)

t
)r

∗

.

The argument of (ii) and (iii) with r > s follows by the Marcinkiewicz In-
terpolation Theorem. The proof completes. �

Proof of Theorem 1.1. Let h ∈ X and w such that

h = w1/p′
G(h)1/p, (4.8)
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where p′ = p
p−1

if p > 1, p′ = ∞ if p = 1.
If

1

q
+

1

r
≤ 1 with r < ∞ (4.9)

since G(h) ≥ 0, we have
∫

Ω

G(h)dλ ≤

∫

Ω

G(h)dλ+ ≤ ‖λ+‖Lq(Ω)‖G(h)‖Lr(Ω). (4.10)

If r = ∞, then
∫

Ω

G(h)dλ ≤ λ+(Ω)‖G(h)‖L∞(Ω). (4.11)

If
1
s
≤ 1

r
+ 2α

N
with s > 1 or

1 < 1
r
+ 2α

N
with s = 1 or

1
s
< 2α

N
with r = +∞,

(4.12)

by (4.8) and Lemma 4.1, for some C > 0,

‖G(h)‖Lr ≤ C‖h‖Ls ≤ C(

∫

Ω

ws/p′
G(h)s/pdx)1/s.

For 1 < s < ∞, if
s < p′, (4.13)

one gets

‖G(h)‖Lr ≤ C(

∫

Ω

wdx)s/p
′

(

∫

Ω

G(h)
sp′

p(p′−s)dx)
p′−s

p′s ;

and if
s = p′, (4.14)

then

‖G(h)‖Lr ≤ C‖G(h)‖L∞(Ω)

∫

Ω

wdx;

Then if

r ≥
sp′

p(p′ − s)
, (4.15)

we derive that

‖G(h)‖Lr ≤ C

∫

Ω

wdx.

Together with (4.10), we have

σ

∫

Ω

G(h)dx ≤ Cσ

∫

Ω

wdx,
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that is (4.3). We apply Corollary 4.1 to obtain of there exists a weak solution
of (1.3).
In case (i), 1 < p < N

N−2α
implies p′ > N

2α
. Then combining q = 1, r = ∞

and s = p′, (4.9-4.15) hold;
In case (ii), p > N

N−2α
and q ≥ Np

2αp+N
. Then take r = q′ and s = p′, (4.9-4.15)

hold;
In case (iii), p = N

N−2α
and q > 1. Then take r = q

q−1
and s = qN

2α(q−1)
,

(4.9-4.15) hold. �

5 The particular case λ = δx0
In this section, our purpose is to find solutions to (1.3).

We introduce following existence theorem:

Theorem 5.1 Let p > 0 and λ ∈ M(Ω) with G(λ) ≥ 0.
Assume that

GG
p(λ) ≤ C0G(λ), a.e. in Ω, (5.1)

where C0 > 0.

(i) If p > 1, for σ ∈ (0, (p−1
p
)( 1

pC0
)

1
p−1 ], problem (1.3) admits a positive

solution u ∈ L1(Ω) ∩ Lp(Ω) such that

σG(λ) + σp
GG

p(λ) < u(x) < σG(λ) + (
p

p− 1
)pσp

GG
p(λ). (5.2)

(ii) If p = 1 and C0 < 1, then problem (1.3) admits a positive solution
u ∈ L1(Ω) ∩ Lp(Ω) such that

σG(λ) + σGG(λ) < u(x) < σG(λ) +
σ

1− C0
GG

p(λ). (5.3)

(iii) If p ∈ (0, 1), for any C0 < ∞ and any σ > 0, problem (1.3) admits a
positive solution u ∈ L1(Ω) ∩ Lp(Ω) such that

σG(λ) + σp
GG(λ) < u(x) < σG(λ) + σp(σp−1C0 + 1)

p

1−pGG
p(λ). (5.4)

Proof. Let
u0 = σG(λ), u1 = σG(λ) + σp

GG
p(λ) (5.5)

and
un = σG(λ) +G(up

n−1), n ∈ N. (5.6)

By monotone iteration, see Theorem 4.2 in [19], problem (1.3) admits a
solution if there is a super solution ū, that is,

ū ≥ G(ūp) + σG(λ) a.e. in Ω. (5.7)
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To this end, let
ut = tσp

G(Gp(λ)) + σG(λ),

by (5.1), then
ut ≤ (C0tσ

p + σ)G(λ). (5.8)

Then by (5.8) and (5.1), there exists t > 0 such that

G(up
t ) + σG(λ) ≤ (C0tσ

p + σ)pGG
p(λ) + σG(λ) ≤ ut. (5.9)

Then (5.9) holds if there exists t > 0 such that

(C0tσ
p−1 + 1)p ≤ t. (5.10)

If p > 1 and C0σ
p−1 ≤ (p−1

p
)p−1 1

p
, (5.10) holds for t = ( p

p−1
)p.

If p = 1 and C0 < 1, (5.10) holds for t = 1
1−C0

.

If p < 1, (5.10) holds for t = (C0σ
p−1 + 1)

p

1−p where C0 > 0. Then we finish
the proof. �

Remark 5.1 The solution v, obtained by the sequence (5.5) and (5.6), is
the minimal solution, that is,

u ≥ v in R
N,

for any solution u of 1.3.

Remark 5.2 In the case of p ∈ (0, 1), we observe that in the behavior (5.4),

σp(σp−1C0 + 1)
p

1−p = (C0 + σ1−p)
p

1−p > C
p

1−p

0

and

σp(σp−1C0 + 1)
p

1−p → C
p

1−p

0 , as σ → 0.

So the behavior (5.4) is not so sharp.

We note that the domain Ω is not necessary to be bounded in Theorem
5.1. In case of α = 1 and Ω = RN , it was built the equivalence among (4.3),
(5.1) and the Riesz capacity or Bessel capacity, see [1]. The key step is to
build the equivalence between (5.1) and

∫

RN

|h|pdλ ≤ C

∫

RN

|∆h|p, h ∈ C∞
0 (RN).

However, it is no easy to obtain similarly estimate
∫

RN

|h|pdλ ≤ C

∫

RN

|(−∆)αh|p, h ∈ C∞
0 (RN)
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for α ∈ (0, 1).
In particular, for α ∈ (0, 1), Ω = RN and 1 < p < N/p, it was built the

equivalence between (5.1) and

λ(E) ≤ C cap(E,W α,p),

where C > 0 and cap(E,W α,p) is the Riesz capacity defined by

cap(E,W α,p) = inf{‖u‖pLp : Γ ∗ u ≥ 1 on E, u ≥ 0, u ∈ Lp}. (5.11)

See [16] for details.
Now we consider the application of Theorem 5.1 in bounded domain.

Lemma 5.1 Suppose that Ω is an open, bounded and smooth domain of RN ,
p > 0 and λ ∈ M+(Ω) with λ(Ω) = 1. If

p <
N

N − 2α
, (5.12)

then G(λ) ∈ L1(Ω), and there exists C = C(N,α, β, λ,Ω) > 0 such that

GG
p(λ) ≤ CG(λ), a.e. in Ω. (5.13)

Proof. By Jensen’s inequality with λ(Ω) = 1,

G
p(λ) = [

∫

Ω

G(x, y)dλ(y)]p ≤

∫

Ω

Gp(x, y)dλ(y),

which, combining (2.11), implies that

GG
p(λ) ≤

∫

Ω

∫

Ω

G(x, y)G(y, z)Gp−1(y, z)dλ(z)dy

≤ C

∫

Ω

G(x, z)

∫

Ω

1

|x− y|N−2α
+

1

|y − z|(N−2α)p
dydλ(z)

≤ C

∫

Ω

G(x, z)dλ(z)

= CG(λ),

where
∫

Ω
1

|x−y|N−2α + 1
|y−z|(N−2α)pdy is bounded by (5.14). �

In particular, if λ = δx0, the behavior of the solution obtained by Theorem
5.1 is controlled by G(λ) and GGp(λ). Therefore, we have to do estimate of
the behavior of GG

p(λ).
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Lemma 5.2 Assume that Ω is an open, bounded and smooth domain of RN ,
x0 ∈ Ω and λ = δx0. If

0 < p <
N

N − 2α
, (5.14)

then there exists a positive constant C = C(N,α, λ,Ω) > 1 and such that
if p ∈ ( 2α

N−2α
, N
N−2α

),

1

C
≤ GG

p(λ)|x− x0|
−2α+(N−2α)p ≤ C, in Br(x0) \ {x0}, (5.15)

if p = 2α
N−2α

,

1

C
≤ GG

p(λ)(− ln |x− x0|)
−1 ≤ C, in Br(x0) \ {x0}, (5.16)

if p < 2α
N−2α

,
1

C
≤ GG

p(λ) ≤ C, in Br(x0) \ {x0}, (5.17)

where r = min{1,d(x0)}
4

.

Proof. Step 1. the case of 2α
N−2α

< p < N
N−2α

. Since G(x, y) < Γ(x− y)
and G(λ) = G(x, x0), then for x 6= x0,

GG
p(x) < C

∫

BD(x0)
1

|y−x|N−2α
1

|y−x0|(N−2α)pdx

= C
∫

BD(0)
1

|x−x0−y|N−2α
1

|y|(N−2α)pdx

≤ C|x− x0|
2α−(N−2α)p(C +

∫

D
|x−x0|

1 s2α−1−(N−2α)pds)

≤ C|x− x0|
2α−(N−2α)p,

(5.18)

where D = sup{|x− y|, x, y ∈ Ω} < ∞.
On the other hand, for x ∈ Br(x0) with r = d(x0)/4,

G(x, x0) > CΓ(x− x0)

and

GGp(x) ≥ C
∫

Br(x0)
1

|y−x|N−2α
1

|y−x0|(N−2α)pdx

= C
∫

Br(0)
1

|x−x0−y|N−2α
1

|y|(N−2α)pdx

≥ C|x− x0|
2α−(N−2α)p(C +

∫

r
|x−x0|

1 s2α−1−(N−2α)pds)

≥ C|x− x0|
2α−(N−2α)p,

(5.19)

for some C > 0.
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Step 2. For p = 2α
N−2α

. Then (5.18) becomes

GG
p(x) ≤ C +

∫ D
|x−x0|

1

s−1ds ≤ C(1 + ln |x− x0|)

and (5.19) becomes

GG
p(x) ≥ C +

∫ D
|x−x0|

1

s−1ds ≤ C(1 + ln |x− x0|).

Step 3. For p < 2α
N−2α

. We prove that
∫

Ω
1

|y−x|N−2α
1

|y−x0|(N−2α)pdy is bounded.

Indeed, for x ∈ Br(x0) with r = min{1,d(x0)}
8

, by h́’older inequality

∫

B2r(x0)

1

|y − x|N−2α

1

|y − x0|(N−2α)p
dy

≤

∫

B2r(x0)

[
1

|y − x|(N−2α)(p+1)
+

1

|y − x0|(N−2α)(p+1)
]dy

≤

∫

B4r(x)

1

|y − x|(N−2α)(p+1)
dy +

∫

B2r(x0)

1

|y − x0|(N−2α)(p+1)
dy

< ∞,

since (N − 2α)(p+ 1) < N , that is, p < 2α
N−2α

.
�

Proof of Theorem 1.2 and Theorem 1.3. The existence of solution to
(1.3) with λ = δx0 follows Theorem 5.1 and Lemma 5.1 under the assumption
of σ > 0 small enough and p 6= 1. Also the behavior of the solution near x0

should be (5.2) for p > 1 and (5.4) for p ∈ (0, 1). Combining Lemma 5.2 and
for x ∈ Ω, by (2.10)

0 <
C(N,α)

|x− x0|N−2α
−G(x, x0) = φ(x, x0) < C(N,α)d(x0)

−N+2α,

we have that the result. �

We note here that it is not able to assume that C < 1 in the estimate
(5.13) as the request of Theorem 5.1 for the case of p = 1. Therefore, in the
following we put some small number Λ as the coefficient of the power source
of (1.9), to make that the monotone iteration converges. That is,

Theorem 5.2 Let λ ∈ M(Ω) with G(λ) ≥ 0. If there exists some C0 > 0
such that

GG(λ) ≤ C0G(λ), a.e. in Ω, (5.20)
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and ΛC0 < 1, then for any σ > 0 problem (1.9) admits a positive solution
u ∈ L1(Ω) such that

σG(λ) + σΛGG(λ) < u(x) < σG(λ) +
σΛ

1− ΛC0
GG(λ). (5.21)

Proof. Let u0 = σG(λ), u1 = σG(λ) + σGΛG(λ) and

un = σG(λ) +G(Λun−1), n ∈ N.

Proceed as the proof of Theorem 5.1 and (5.10) becomes

ΛC0t+ 1 ≤ t,

which implies the result if ΛC0 < 1. �

Proof of Theorem 1.4. The existence of solution to (1.9) with λ = δx0

follows Theorem 5.2 and Lemma 5.1 under the assumption of Λ > 0 small
enough and p = 1. Combining Lemma and Lemma 5.2 and for x ∈ Ω,

0 <
C(N,α)

|x− x0|N−2α
−G(x, x0) = φ(x, x0) < C(N,α)d(x0)

−N+2α,

we have that the asymptotic behavior.
Prove the uniqueness. Let λ1 and ϕ1 be the first eigenvalue and respond-

ing eigenfunction respectively, of

{

(−∆)αu = λ1u, in Ω,

u(x) = 0, on ∂Ω.

Then the coefficient Λ satisfies Λ < λ1, if not,then by computing directly, we
have that

φ1(x0) = 0,

which is impossible with φ1 > 0 in Ω.
We know the minimal solution v of (1.9) with λ = δx0 is obtained by

the sequence u0 = σGδx0 and un = ΛG((un−1)+) + σGδx0 n ∈ N. Let u be
another solution of (1.9) with λ = δx0, then we have u ≥ v. We assume that
u 6≡ v,

0 ≤ u− v = ΛG(u− v),
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which multiples by ϕ1 and integrate over Ω to get that
∫

Ω

(u− v)ϕ1 = Λ

∫

Ω

ϕ1G(u− v)

= Λ

∫

Ω

(u− v)G(ϕ1)

=
Λ

λ1

∫

Ω

(u− v)ϕ1

<

∫

Ω

(u− v)ϕ1,

which is impossible. �

6 Asymptotic behavior of the solutions

In the first of this section, we do some estimate for solutions of (1.3) and
some type of uniqueness. Let u and v be two solutions of (1.3) and v be the
minimal one obtained in section§5. For λ = δx0, by regularity result we have
know u, v are continuous in Ω \ {0}. See [10] for the regularity.

Proposition 6.1 Suppose that Ω is an open, bounded and smooth domain
of RN (N ≥ 2), 0 < p < N

N−2α
and λ = δx0 with x0 ∈ Ω.

Let u be a solution of

u = G(up
+) +G(σδx0)

such that there exists τ < N
p

having

lim sup
x→x0

u(x)|x− x0|
τ < ∞. (6.1)

Then we have that

lim
x→x0

u(x)|x− x0|
N−2α = C(N,α)σ. (6.2)

Proof. We divide the proof into several steps.
Step 1: there exists (xn) such that

xn → x0 as n → +∞

and

lim
n→∞

G(up
+)(xn)

u(xn)
= 0. (6.3)
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By (6.6), there exist τ0 ∈ [N − 2α, N
p
) and C1 > 0 such that

u(x)|x− x0|
τ0 ≤ C1, x ∈ R

N (6.4)

and a sequence (xn) such that xn → x0 as n → ∞ and

u(xn)|xn − x0|
τ0−ǫ ≥ C2, (6.5)

where C1, C1 > 0 and ǫ ∈ [0,min{τ0 − N + 2α, 2α+(1−p)τ0
2

}] small enough.
Then

G(up
+)(xn)

u(xn)
≤ C|xn − x0|

τ0−ǫ

∫

Ω

1

|xn − y|N−2α

1

|x0 − y|pτ0
dy

≤ C|xn − x0|
2α+(1−p)τ0−ǫ

→ 0 as n → ∞,

since 2α + (1− p)τ0 − ǫ > 0.
Step 2: to prove

lim sup
x→x0

u(x)|x− x0|
N−2α < ∞. (6.6)

If (6.4) hold for τ0 > N − 2α, from Step 1 and

1 =
G(up

+)(xn)

u(xn)
+

G(σδx0)(xn)

u(xn)
,

where we see that

lim
n→∞

G(σδx0)(xn)

u(xn)
= 1, (6.7)

which implies that

lim
n→∞

u(xn)|xn − x0|
N−2α = C(N,α)σ. (6.8)

Now we obtain a contradiction between (6.8) and (6.5). So τ0 = N − 2α.
Step 3: to prove that

lim
x→x0

u(x)|x− x0|
N−2α = C(N,α)σ. (6.9)

We see the fact u(x) ≥ G(σδx0), which implies that

lim inf
x→x0

u(x)|x− x0|
N−2α = C(N,α)σ. (6.10)
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By (6.6) and (6.9),

G(up
+)(x)

u(x)
≤ C|x− x0|

N−2α
∫

Ω
1

|xn−y|N−2α
1

|x0−y|p(N−2α)dy

≤ C|x− x0|
N−p(N−2α)

→ 0 as |x− x0| → 0.

(6.11)

Now we assume that there is a sequence (xn) such that

lim
n→∞

u(xn)|xn − x0|
N−2α > C(N,α)σ. (6.12)

From Lemma (6.11) and

1 =
G(up

+)(xn)

u(xn)
+

G(σδx0)(xn)

u(xn)
,

we see that

lim
n→∞

G(σδx0)(xn)

u(xn)
= 1, (6.13)

which implies that

lim
n→∞

u(xn)|xn − x0|
N−2α = C(N,α)σ. (6.14)

Now we obtain a contradiction between (6.14) and (6.12). �

Finally, we see a weak version of uniqueness for (1.3).

Proposition 6.2 Suppose that Ω is an open, bounded and smooth domain
of RN (N ≥ 2), 1 < p < N

N−2α
and λ = δx0 with x0 ∈ Ω. Assume that v is

the minimal solution of (1.3) such that

v ≤ cσG(δx0) in R
N

and u is a solution of (1.3) such that

0 < u(x) ≤ C(σ)G(δx0)(x), x ∈ Ω \ {x0}, (6.15)

where C(σ) → 0 as σ → 0.
If σ is small, then

u ≡ v in R
N.
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Proof. We assume that
u 6≡ v

We know that

0 ≤ u− v = G[up(x)− vp(x)] ≤ G(up−1(u− v)),

and

w = u− v ≤ G(up) ≤
C

|x− x0|(N−2α)p−2α
,

where (N−2α)p−2α
N

+ 2α
N

< 1. Then there exists r > 1 such that

r[(N − 2α)p− 2α] < N and
1

r
+

2α

N
< 1.

We use Lemma 4.1 with r and s = 1
1
r
+ 2α

N

> 1 to obtain that

‖w‖Lr(Ω) ≤ ‖G(up−1w)‖Lr(Ω) ≤ c‖up−1w‖Ls(Ω), (6.16)

for some constant c independent σ.
By hölder inequality,

‖up−1w‖Ls(Ω) ≤ ‖up−1‖
L

sr
r−s (Ω)

‖w‖Lr(Ω), (6.17)

where by (6.15),

up−1 ≤
cC(σ)p−1

|x− x0|(N−2α)(p−1)
,

and it follows from sr
r−s

= N
2α

and (N − 2α)(p− 1) < 2α that

(N − 2α)(p− 1)
N

2α
< N,

then we have that

‖up−1‖
L

sr
r−s (Ω)

≤ cC(σ)p−1

∫

Ω

1

|x− x0|
(N−2α)(p−1) N

2α

dx ≤ cC(σ)p−1, (6.18)

where c > 0 independent of σ.
From (6.17), (6.18) and (6.16), we have that

‖w‖Lr(Ω) ≤ cC(σ)p−1‖w‖Lr(Ω),

which is impossible if cC(σ)p−1 < 1 and ‖w‖Lr(Ω) 6= 0. �

For p ∈ (0, 1), we have following results:
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Theorem 6.1 Under the hypothesis of Theorem 5.1, we assume that p ∈
(0, 1) and w0 is the positive solution of

{

(−∆)αu = up, in Ω,

u(x) = 0, in RN \ Ω.
(6.19)

Then for any σ > 0, problem (1.3) admits a solution u ∈ L1(Ω) ∩ Lp(Ω)
such that

w0+σG(λ) ≤ u ≤ w0+σG(λ)+σp(σp−1C0+1)
p

1−pGG
p(λ) in R

N, (6.20)

where C ≥ C1 and v is the minimal solution of (1.3).

Proof of Theorem 6.1. Let

u0 = w0 and u1 = σG(λ) +G(up
0) (6.21)

and
un = σG(λ) +G(up

n−1), n ∈ N. (6.22)

We first to prove that

un+1 ≥ un, n ∈ N, x ∈ R
N .

We observe that

u1 = G(wp
0) + σG(λ)

= w0 + σG(λ)

≥ u0.

We assume un ≥ un−1, then we prove that un+1 ≥ un by the fact of

un+1 − un = G(up
n − up

n−1) ≥ 0.

problem (1.3) admits a solution generated by un defined (6.21) and (6.22)
if there is a super solution ū, that is,

ū ≥ G(ūp) + σG(λ) a.e. in Ω. (6.23)

To this end, let

ut = w0 + tσp
G(Gp(λ)) + σG(λ),

by (5.1), then
ut ≤ w0 + (C0tσ

p + σ)G(λ). (6.24)

33



Then by (6.24) and (5.1), there exists t > 0 such that

G(up
t ) + σG(λ) ≤ (C0tσ

p + σ)pGG
p(λ) + σG(λ) ≤ ut, (6.25)

where we use the fact of

(a+ b)p ≤ ap + bp, a, b > 0, p ∈ (0, 1).

Then (6.25) holds if there exists t > 0 such that

(C0tσ
p−1 + 1)p ≤ t. (6.26)

Since p < 1, (6.26) holds for t = (C0σ
p−1 + 1)

p

1−p where C0 > 0. Then we
finish the proof. �
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