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1 Introduction

In this note, we consider the existence of positive solution to

—A)u=u5 +o), in Q,
{( ) i (1.1)

u=0, in RN\ Q,
where p > 0, 0 > 0, A € M(Q) with M(Q) the Radon measure space,

uy(z) = max{u(z),0} and Q is an open, smooth domain of RY (N > 2).
Here (—A)“ is defined, for a regular function u, as follow

u(r +y) — u(r)
|y | V2

(—A)%u(z) = (v — 1) lim

r—0 RN\BT

dy, (1.2)

where a € (0,1), B, denotes the ball centered at origin with radius r in RY.
This definition is called in the principle value sense.
The original problem of (1.3) is

1.3
u =0, in 0, (1:3)

{—Au =ul +o), in
which has been studied intensively, see [1, 2, 4, 19] for the existence.
In the study of elliptic equations involving Measures, the Green’s func-
tions plays an important role. Motivated by the construction of the Green’s
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function for laplacian case, we first also consider the fundamental solution
for fractional laplacian. We denote

C(N,«) N
I'(x) = R 1.4
(0) = T, weRV\ (o), (1.4
where C'(N, «) > 0 is such that
(—A)T = &

in the distribution sense. Also I is a fundamental solution to
(=A)*u(x) =0, ze€ RY \ {0}.

in the principle value sense. The fundamental solution is the essential part
to construct Green’s function for fractional laplacian operator, that is,

Definition 1.1 Let Q be an open and smooth domain of RN (N > 2). We
denote

G({L‘,y):F(ZE—y)—¢(ZL‘,y), (xay) ERN XRN\Da (15)
where I" is defined by (1.4), D = {(z,2) € Q@ x Q} and ¢(z,y) is the solution

of
{ (—A)Yop(x,2) =0, z€Q, (16)
d(x,2)=T(x—2), zeRN\Q,
for any given x € Q, and
{(—A)?fﬁ(%y) =0, zeq, 4
é(z,y)=T(z—y), zeRV\Q.

for any given y € 2.
We call G(x,y) as Green’s function to fractional laplacian with order c.

It is known that the study of the elliptic equations involving measures
is based on the estimate of singular behavior of Green’s Function, see [7].
Equation (1.3) involving Radon measure, of course, it isn’t supposed to find
a regular solution. So one type of weak solution of (1.3) by Green’s function
for fractional laplacian operator should be introduced, there is,

Definition 1.2 Let Q be an open and smooth domain of RN(N > 2) and
G(z,y) is the Green function. We say u is a weak solution of (1.3) if u is
measurable, G(u?) € L'(Q) and

u(:v) = G(uh)(z) + oG(\)(x), ae x€RY, (1.8)
where G(uf ) (z) = [, G(z, y)ull (y)dy and G(X = [, G(z,y)d\(y) with G

being the G’reens function for fractional laplaczan by Definition 1.1.
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We remark here that by the definition of G, we know that for x € RV \ Q,
G(x,y) =0 for any y € RY, so

u(z) =0 zeRY\Q.

Now we are in the position to show the main existence theorem for frac-
tional equation involving measures and reaction source.

Theorem 1.1 Assume that € is an open, bounded and smooth domain of
RY and X € M(Q). Then there exists a solution u € L. (Q) of (1.3) in the

loc
sense of (1.8) for o small enough, if one of the following assumptions:

(i) 1<p<2;

(i) p> 5t and A €LYQ) with q> o

(iti) p= x5 and Ay €LI(Q) with ¢ > 1.

Moreover, if [, G(z,y)d\(y) >0 a.e. z € Q, then u > 0.

Remark 1.1 We see that

Np . N
—— =1 if p= .
2ap + N N — 2«

In particular, for A = 4., the Dirac mass at point xy € {2, Theorem 1.1
gives the existence of solution to (1.3) for p € (1, 125-). In what follows,
our interest is to study the asymptotic behavior of the solution near xy with
p € (0, x5=). The asymptotic behavior the solution for p € (1, z25-) is

) N—2«
stated as:

Theorem 1.2 Suppose that ) is an open, bounded and smooth domain of
RY (N >2)and1 < p < NiVQa. There exists og > 0 such that for any
o € (0,00], problem (1.3) with A\ = 9., admits a solution wu, satisfying that
for x € Bc(xg) with € € (0, w),

(1) if p > 2%, then

N—2a’
oPC1 oC (N, «a) oPC
(N—2a)p—2« < U(ZL‘) o N—2« < (N—2a)p—2a’
| — 20 P | — 20 |z — ¢ P
(i) if p = %=, then
oC(N,a)

—oPC In(|x — o]) < u(w) < —oPC'ln(|z — zol),

- |x _ :L,O|N—2a
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(i11) if p < 7%=, then

oC(N,a)

—1
o?C™ < u(x) — P

o?PC,

where C'(N,«) is from (1.4) and C > 1 depends on N, «, Q2 and xy.
For the case p € (0,1), we have

Theorem 1.3 Suppose that € is an open, bounded and smooth domain of
RN (N >2) and 0 < p < 1. Then for any o > 0, problem (1.3) with A\ = &,,
admits a solution u, satisfying that for x € B(xo) with € € (0, %ﬂm)’l}),

(i) if p > 22—, then

N—2a’
e <l - I (Cro
‘SL’ —xo‘(Nf2a)pf2a ‘SL’ _ xO‘N72a - |$ _ x0|(N*20£)p72a’
i) if p= %=, then
( ) fp N—2a’
oC (N, «a)

< —(C+ o' )% In(|z — o)),

-1
—o?C™ In(|z — o)) < u(x) — |z — 2| N2

(i11) if p < %=, then

oC(N, )

—p\ —2—
ErErA =T CR il

o?C < u(x)

where C'(N,«) is from (1.4) and C > 1 depends on N, «, Q2 and xy.

For p = 1, problem (1.3) may non-exist solution for any ¢ > 0. See an
example with a = 1, let A\; and ¢; be the first eigenvalue and eigenfunction
respectively of

—Au = M\uy, in €,
u(z) =0, on 0f.
In particular, for some type domain €2, it could be Ay < 1. If

—Au =uy + 0d,,, in €
u(z) =0, on OS2

admits a positive solution, then by computing directly, we have that
(bl (Io) =0,
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which is impossible with ¢; > 0 in (2.
So in the case of p = 1, we consider the following problem

—A)*u =Auy +oX, in €,
{( ) . o)

u(z) =0, in RN\ Q.

where A > 0.

Similarly to Definition 1.2, we say that u is a weak solution of (1.9) if
u € LY(Q) and

u(z) = AG(uh)(z) + oG(\)(z), ae. xRN (1.10)

Theorem 1.4 Assume that €0 is an open, smooth and bounded domain of
RY. Then there exists Ay > 0 such that for any A € (0,Ay), for any o > 0,
problem (1.9) with \ = §,, admits a solution u, satisfying that for x € B.(xo)
with e € (0, 2xidrol 1}y

(i) if 2%~ < 1, then

N2«
oAC™! oC (N, «a) oAC
N—da u(:p) B N—2a < N—4a’
| — 20 | — 20 |z — ¢
(i) if 7%= =1, then
oC(N,a)

—oAC In(|z — 20|) < u(z) — < —oAC In(|x — z9)),

|$ _ :L‘O|Nf2a

(i11) if 2% > 1, then

oC(N,a)

- |z — zo|N—20 =

oAC™t < u(z) oAC,
where C'(N,«) is from (1.4) and C > 1 depends on N, «, Q0 and xy.
Moreover, the solution is unique.

In the Theorem 1.2 and Theorem 1.4, the singular estimate is more pre-
cisely stated than
oC(N,a)
u(r) = ————=—(1+o(1)).
(@) = 2 s 1+ o()
This article is organized as follows. In section §2 we present some prelimi-
naries to the Green’s function. Section §3 is devoted to obtain the existence of
solution to (1.3) with general convex reaction sources by Conjugate method.
In section §4 we prove Theorem 1.1 by applying the results of Section §3.
Finally, Theorem 1.2 is shown in section §5.
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2 Green’s function for Fractional Laplacian

In this section, we consider the properties of Green’s function for fractional
laplacian operator. Motivated by local operator A, the Green’s function with
order a could be used to solve the Dirichlet type problem involving fractional
laplacian. And its representation formula using Green’s function is stated as:

Theorem 2.1 Assume that Q is an open and smooth domain of RN, f € S,
where S is the Schwartz space of rapidly decaying C* functions in RY and
the Green function G is defined by (1.5).

Then

ue) = [ Gl i)y (2.)
s the solution of

{(—A)au:f in Q, 22)

u=0 in RN\ Q.
In order to prove Theorem 2.1, let’s study first about the fundamental

solution T.

Lemma 2.1 Let f € S. Then
w@) =Txf= [ T(z—y)f(y)dy
RN
1s the solution of

(=A)*u = f in RN (2.3)

Proof. In fact, From Proposition 3.3 in [10], for (—A)® defined (1.2) and
ues
(=A)*u = FH(|¢**Fu) in RN

Then we obtain that

(2.4)

We first claim that

). (2.5)
Assume (2.5) holds at this moment, then (2.4) turns to be

u="Txf.
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Now we prove (2.5). To this end, we start defining the heat kernel, for
a€(0,1) and z € RV, as

H(x,t) = / e2me el ge (2.6)
RN

and denote -
= C/ H(z,t)dt, (2.7)
0

where C' > 0 will choose later.
Step 1. To prove there exists C' > 0 in (2.7) such that

1
19

Indeed, letting £ € RV \ {0} and changing variables = =
t =

K=F"im):

‘5‘ and z = [¢]|Z and

glt;a, for simplicity, still denoting Z, ¢ and & by z, t and x,

f’(lc)(g) _ / —27rz§a:/ / 2mx-z—t|z|? adZdtdl‘
RN RN

— 2#@65:2/ / 2mx-z—t| 2|2 adZdtd.ﬁL’
S R A

£

€l

Denote C(&) = [pv e ™" [ oy 22 dadtdr. We claim first
that for |e,| = |€,| = 1,

where €; =

C(ez) = C(éy).

In fact, there exists a matrix A with |A| = 1 such that €, = Ae,, and then
by changing variable, we have the claim. Now we can let € = (1,0,---,0)

and then
C(é’g) — / 6—27ri$1/ / 627rx-z—t\z\2adzdtdx > 0.
RN 0 RN

Step 2. To prove
K=T.

For z € RV \ {0}, by changing variables £ = |z|¢ and 7 = ‘x‘ga

K(z) = / / Nemf*t'ﬁ'“dgdt
0 R
1 > 2méy-E—t|€|2 7 & 17
= —— e déd,
|$|N_2a/0 /RN




where €, = %. Denote

2]
C, = / / 2 S-SR gé g,
0 RN

Similarly to step 1, C,, is some positive constant independent of z. By choose

C(N,a) = C, in (1.4), then K = I'. And we finish the proof. O
Remark 2.1 From Lemma 2.1, the fundamental solution I' could be seen as
(—A)T() = b, (2.8)
in the distribution sense.
Proof of Theorem 2.1. Since (2 is smooth and f € §. For x € (),
(=A)T(x—y) =0, yeRY\Q.
For u defined by (2.1) and z € Q,

Jo Gz + 2,9) f(y)dy — [, Gz, y) f(y)dy

|z‘N+2a

dz

(=A)%u(z) = (a—1)lim

r—0 RN\BT

S ESHE N

— [ CArTE - sy - [ (-a)zete W)y

= [ (CA1TE - )y

RN

= f(a),
the last equality used Remark 2.1. U
Remark 2.2 From Theoreml1.1, the Green’s function is the solution of

{ (—=A)*G(x,-) = 0.,  in the distribution sense, 2.9)

G(z,y) =0, y € RV\ Q,
for any x € Q.

Remark 2.3 [t is well-known that it is studied in many papers, such as [7,
6/, for singular behavior of Green’s Function expressed by transition density
which is equivalent to Definition 1.1, by remark 2.2.



Theorem 2.2 Assume that Q is an open and smooth domain of RN and
d(z) = dist(x, RN\ Q) for x € Q. Then there exists C > 1 dependent of N, «
such that

C~'min{ |mfy|1N_204’ d° (2)d” (y } < G(z,y)

|z— y\N
1
< Cmin{;—v==,

da(l‘)da y)} (210)

lz—y|N

for (z,y) € Q x Q\ D with D defined in Definition 1.1, and

G(:an)G(yv Z) <C |ZL‘ - Z|N72a
Gz,z) 7 |z —y[V2ly — z|N-2e7

(2.11)

for (z,y), (y,2), (x,2) € A x Q\ D.

Proof. The inequality (2.10) and (2.11) see Corollary 1.3 and Theorem 1.6
(3G Theorem), respectively, in [7]. O

Theorem 2.3 Assume that  is an open and smooth domain of RN. Then
0 < ¢(x,y) < C(N,a)min{d(z)** N, d(y)** "} (2.12)
for (z,y) € Q2 x Q, and
G(z,y) =0, if xeR¥N\QoryecRY\Q.

Moreover,

G(z,y) =G(y,z), =y, x#y. (2.13)

Proof. We divide the proof into several steps.
Step 1: Prove that fixed z € Q, ¢(x,y) < d(c;(% 5= for any y € Q. If not,

there exits a point yy € €2 such that

o(x,y0) = max ¢(r,y) > d(@)N 2

Therefore, we have

QZS(.I’, Yo + Z) B ¢($>?/0)
‘2|N+2a

(=A); oz, y0) = (= 1) dz >0

RN

which contradicts (—A)j¢(x,yo) = 0, obtained by the definition of ¢.

Similarly, we have ¢(z,y) < d(z()%ﬂ)a.




Step 2: We prove that ¢(x,y) > 0 in (Q x Q). If not, there exists (zo,yo) €
2 x Q such that ¢(zg,yo) < 0. Then there exists g € Q2 such that ¢(zg,y) =
mingeo ¢(xo,y) < 0. Therefore,

(b('rOa g + Z) _ (b(l’(], g)
|z‘N+2a

(=A)yd(z0,y) = (= 1) dz <0,

RN

which contradicts (—A)gd(z,yo) = 0, obtained by the definition of ¢.
Step 3: We prove (2.13), in fact, by the fact of

MNe—2)=T(z—2), z#ux, (2.14)
we just have to prove that
¢(x,2) = ¢(2, ).
In fact, put (2.14) into (1.6) and (1.7) with z = y. Then we have that
¢(x,2) = ¢(2,7),

for any z € RY. And we finish the proof. U

3 Equations with general reaction sources

In this section, we study the existence results to equations with general re-
action sources, that is,

(3.1)

(_A)au = ](l’, u) + >‘7 n Qa
u(z) =0, in RN\ Q,

where ) is open and smooth domain in R".

Let K, = Q, N Bg,, where By, is the ball centered at the original with
radius R,, > 1, R, strictly to n and R,, — 400 as n — +o0, and Q,, = {z €
Q, dist(z,00) < R%z} Then

Vn >0, |K,| < oo, UKn:Q.

n>1
We call following assumption as Conjugate-Condition
(1) » — j(x,r) is nondecreasing, convex and lower semi-continuous for a.e.

x €
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(17) j(z,0) =0, a.e. in

The conjugate function j*, defined by

i (x,r) = ilelﬂg(m —j(z,7)).

Then j* satisfies Conjugate-Condition. For simplicity,

J(x,u(x)), if  u(x) < oo,

J(u)(x) = { (3-2)

lim, o j(z,u), if u(x)=o00

and j*(u) is similarly defined.
We denote

WW@=AQWM®@,

where G(z,y) is a Green’s function in . By (2.13),

Gwmwzée@wumm=mmw.

In particular,
o) = [ Glamar) (33

We also denote
L3 () = LZ(Q) N Ly (RY),
where L2 (Q) = {¢ : RN - R, supp(§) C K, nbig enough and esssup [£| <

+oo} and L, (RY) is the space of nonnegative measurable functions.
Being given C' > 1 and h € L (£2), we denote

fﬂj*(%)(@(h)du, if ﬁ < 400 a.e.

Fo(h) = and  j*(gay)G(h) € LY(Q),  (34)

400, if not.

with the convention F'(h) = Fo(h) if C =1, ﬁ =0if h = G(h) =0, and
uh =01if h =0 and u = oo.
We put
X={heLX(Q): F(h)<oo} (3.5)

and

X={heLX(Q): 3C>1st Fo(h)< oo}.
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Theorem 3.1 Assume that f > 0 is measurable. Then (3.1) admits a solu-
tion in the sense of

{(z’)uemm, u(z) = N((w)(@) + f(x), ae in RN,

(i) uh € L'(RY), VheX, (3.6)

if and only if
/ Fhdp < F(h), WheX. (3.7)
Q

Proof. We first prove " =".
Multiplying (4.2) by h € L and integrating over {2 implies that

/thda: = /Q(U—G(j(u)))hd:c
~ [ (= (G
~ [l — iis)s
h

< /Qj*(M)G(h)dx
— F(h).

"

Now we prove that " <
We denote that

Gon(h) = / min{xx, ()i, (1) G 2, y), m}h(y)dy, m €N

and
fu(x) = min{xk, (z)f(z),n}, meN.
Fix m, we define that
(4) uo = pfo,
(ii)¥n >0 B, = inf{xx,j(un),n} (3.8)
(100)tnr1 = PG (UnBn — 5 (Bn)) + i,

where p € [0,1], m,n € N. In fact, u, and 3, depend on n and p, so we note
Uy, = u(n,m, ) and B, = f(n, m, p).

Then for any n > 1m >0 and u € (0, 1),
Unp, S Up+1, Bn S ﬁnJrl (39)
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and m — u(n,m, 1), p — u(n, m, p) are increasing strictly for n fixed.
Step 1. Now we prove that for any n, m and p € (0,1),

/ unhdz < M F(h), heX. (3.10)
Q 1L —p

Claim 1. For any h € X, there exists C' € (I, ﬁ) such that F(h) < oo.
Then there exists ¢, € L2°(£2) is the solution of

S max{éﬁnGm(gbn),h}. (3.11)

We assume Claim 1 is right at this moment, and we continue to prove

(3.10). We observe that ¢, € L°(2) and

. max{ﬁnGm(¢n)u Ch}
Pt < [ (G

Since j* is increasing, then

)G(¢y,)dx.

Fe(on) < | maxmﬁng&gn)

By using the fact of G > G,,,, ¢,, > h and j*(ar) < aj*(r), a € [0,1],
Feo(én) < Jomax{5*(8:)Gum(¢n), j* (57) G (h)
< fg]*(ﬁn)GM(gbn)d"E + FC(h)-

Since Gy, () < m|Bg,, ||| ¢nllLoo, then j*(B8,) < unB, € LF ().
Multiplying (3.8)part (iii) by ¢, and integrating over {2 implies that

)" (6 de

(3.12)

/Q tnsibe = K /Q (nBn — 5 (B Gon () + 1 /Q fauda
by 37) < u /Q [nBn — 5 (Bu) G (D)l + iFic ()

by 312) < g [ Gn(6,)de + pFelh)

IA

hC [ wnuds + uFo(h
Q

IA

MC/ un+1¢nd~r =+ ,ch(h),
Q

that is,

i
Upy1Pndr < ,
/Q ! 1—puC

13



and make C' — 1 to get our results.
Step 2 convergence. By Monotone and step 1, we have that

Uy, — u(m, p) as n — 400,

fn— fasn — +oo
and
UnfB — 37 (Bn) = ulm, A)j'(u(m, A)) — 5" (5" (u(m, N)))

= j(u(m,\)) as n — +o0.

We see that u(m, u) = pG,(j(u(m, p)))(z) + f(x) a.e in Q, then make m —
+00, u(m, u) = u, such that u, > 0 measurable, u,h € L'(Q) for any h € X
and

u, = pG(j(uy))(z) + f(z) ae. in Q.

This implies, in particular,

/uuhdx = ,u/j(uM)G(h)der,u/ fhdz, heX.
Q Q Q

For C' > 1 such that F(h) < oo, then

Ch .
[ gy — )60 = (e 1) [

u,hdx +,u/ fhdzx,
Q Q

and consequently

1
u,hdr <
QM _C',u—l

Put p — 1, by monotone of y — wu, and (3.13), then there exists u > 0
measurable such that uh € L'(2) and u is the solution of (4.2).
Proof of Claim 1. For n and m fixed, let

Angp = B.Gnp,

Fe(h). (3.13)

with r, spectral radius and we assume, at this moment, that
r, < C' where C independent of n. (3.14)
We see that

(CI—A,)™ =) AL in L*(Q),

>0

14



so there exists ¢ € L?(2), such that ¢ > 0 and

A_l
LS

Then ¢ € Loog(R2), h, 5, € Cyoo(Q2) and

And + .

1G9z < m / da < m| K6 2.
Km

Let vg = h, v;y1 = sup(%Anvi, h), then for any 1,
v; S v < @,
then there exists v,, such that
v; = v, as 11— +oo

and v, is the solution of (3.11).

Finally, we prove (3.14) by inductive method, that r,_; < C implies
rn < C. The spectral radius r(5) = r(8G,,) is continuous and increasing with
respect to 5. Soif r, > C, there exists 5, € L3°(§2) such that 5,1 < B, < B,
and r(3*) = C. So there exists v € LP(Q2) and v € X,

Cv Cv
— < < <4 .
Gv ~ G,v — Be < 5'(un)
Let
s = UGy, (unfe — 7°(84)) + puf (3.15)

and multiply (3.15) by v, we have

Jo usv=p [, G (un B — *(B.)) (@) (y)dady + p [, frv
< Ou Jouv — p [ 57°(B(2))) Gk (v)(y)dzdy + pFe(v),

where G (h)(z) = [ xx (®)xk (¥)G(z, y)h(y)dy. For Fe(v), we have

Fo(v) = foi"(£5)G(v)da
< fod" (555G (v) da

Then (3.16) and (3.17) imply that

/u*vguC/unv,
0 0

15
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combining u, > u,, we have that

/ usvdr = 0. (3.18)
0

Let K = {x € Q,v(z) > 0}, then by (3.18), we have

/u*:0,
K

which, combining (3.15) and f > 0, implies that

0> 4 /K d /K xae ()X ()G 1) [t () B () — 5 (B) ().
By the fact of 5,1 < i < S,
K C {z€9Q 8.(x) >0} C {z € Quny)Bu(y) — 5°(8.)() > 0},

which implies that
G(z,y) =0 ae. KxK,

then Gg(v) = 0 in K implies that v = 0, that is impossible. And we finish
the proof. O

For f changing signs, we assume that there exists a measurable function
v such that
(i) v e LY(K,) and N(-,-)j(v) € L'(K,,Q) for all n € N;
(it) wv(x) < N(j(v))(z) + f(z) a.e. in Q.

If j: 2 xR — (—00,00] measurable function satisfies Conjugate condi-
tion. Denote

Jo(x,r) = sup ra—j(x,a)
a>v(z)

X, = {h € L®(Q):3C > 1 st. ji(%)@(h) e L1(Q)}

Corollary 3.1 Assume that [ is measurable. Then

(0) uzv, u(r)=G(u)(x)+ f(z), =l 510
(ii) uh € LY(Q), VheX, (3.19)

admits a solution, if and only if
/thdx < /Qj;(#)(@(h)dx, Vh e X,. (3.20)
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Proof. Let w = u — v, f(z) = f(z) + G(j(v))(z) — v(z), j(z,7) = jla,r+
v(x)())—j(x,v(x)) if j(x,v(z)) < oo and j(x,r) = o0, if j(z,v(z)) = co and
r > 0.

Step 1. (3.19) is equivalent to

{(i) w=0, wr)= G(j(fb))(w) + flx), e, (3.21)

(it) wh € LY(Q), VheX,

where oh
X={heLXQ):3C>1st. j*(m)(}(h) e LY(Q)}

We have that f > 0 by condition of v. Now we have to show
X =X,.

By directly computation, we have that

g () = 57 (1) = ro(x) + j (2, v(2)).

So
~., Ch . Ch

J (G(h))G(h) = Jvm

combining that hv € LY(Q) and j(x,v(z))G(h) € L'(Q), then X = X,,.
Step 2. (3.20) is equivalent to

)G(h) — Chv + j(z,v(x))G(h),

; e ;
/thdxé/gy (G(h))G(h)d ., VheX.

In fact, the equivalence derives from

/Q‘fhdx:::jg‘fhdx'+ /£K3(7@0)($)—-v(rﬂhdx

and
|5 6t = [ Gi(immde + [ B0 - vl
Qj S0 x = ij G x i j())(x) —v(x)|hdz.
Now we applying Theorem 3.1 to obtain our corollary. O
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4 Proof of Theorem 1.1

In this section, we do the existence of solution to

(—A)u =u} +oX, in Q,
(4.1)
u(z) =0, in RN\ Q.

where p > 1, 0 > 0 and A € M(Q).

Corollary 4.1 Assume that p > 1 X € M(Q) and o > 0, G(\) € £}(Q).
Denote v(x) = min{G()\)(x),0}. Then there exists u € L} .(Q) such that
G(ul) € Li,.(Q) and (4.1) holds in the weak sense of
u(z) > v(x), T € (),
u(z) = G(u)(x) + G\ (z), =€, (4.2)
uh € L'(), heX
if and only if

/

&/GMMA<p_1 " g hex (4.3)
O- / / ) ) *
Q =7 Jo G(h)P!

where p' = z% and X is defined by (3.5).

Proof. We are going to use Corollary 3.1 in this proof. In Corollary 3.1,

X = X and /
o [ 20
j*(r) =
400, if r<o0.

By v(x) = min{G(\)(z),0} < 0, then we have j; = j*. We note here that
X, =X
We claim that (3.20) is equivalent to (4.3). In fact, for h € X,

/fhda:—//G:c y)h(z)d\(y )da::/QG(h)dA.

Then applied Corollary 3.1 to get our results. 0

We note here that Theorem 3.1, Corollary 3.1 and Corollary 4.1 hold for
any open smooth domain, including 2 = RY. In what follows we do the
application of Corollary 4.1 in bounded domain. And the embedding:

G: L*(Q) - L"(Q)

plays an important roles. The precise statement is following:

18



Lemma 4.1 Assume that Q) is open, smooth and bounded.
(2) if
1 2«

s N’
then there exists some C > 0 such that

1G(R) |l < Cllhllzs(0); (4.4)
(4) if

1 < 1+ 2—a d > 1

S , N an S s

then there exists some C > 0 such that

IG(W)[[Lr @) < ClIR]l2s@)- (4.5)
]_ < 1 + 2_0[
r N’
then there exists some C' > 0 such that
Iz < CllAlr ) (46)

Proof. Step 1. To prove (4.4). By the Hdélder inequality and (2.12), for
any r € (),

H/ (2, ) h()dy e < /nydylf/\h J[dy)

Clllol | g tyl=o

IN

where s' = 5. Since % < %‘3‘, that implies (N — 2a)s’ < N, and ) is

bounded, then

1 1
o dy < / oy
/Q |z — y| (N2 Bp(x) [T — y|V =20

:C/ N2asd7,

< CDN N2a5

where D = sup{|z —y|: x,y € Q}. Then (4.4) holds.
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Step 2. To prove (4.5) and (4.6) with r < s. We have

1 cemmwariyt = ([ [ cepnmaria
hy)xe(@)xa) ;1) 41
< o [ ARy

- C{/RN/RN T —y |y|N)2>§Q( y)dy]rdx};;

by using the integral Minkowski’s inequality, then,

([1[ emhtisrary
<C

h"(z —y)xa(x)xalr —y) , 1
[/ (N—2a)r d.ﬁL’] Tdy
RN JRN ‘y‘

S =

1
<c [ 1= pnalnale - pdalt gy
Q JRN ]
<l < Clh

L3(9)

where Q = {z — y, z,y € Q} is bounded.

Step 3. To prove (4.5) and (4 6) with r > s > 1 and 1 <14 2 We claim
that if r > s and Ti* = % 22 the mapping h — G(h) is of Weak type (s, "),
in the sense that

15

{2 € Q:|G(h)| > 1} < (A, IE@

heLf(Q), al t>0, (4.7)

where constant A .« > 0.
Denote for v > 0,

G(z,y), if [x—yl<wv
GO(xay) = .
0, if |x—y| >
and Goo(,y) = G(x,y) — Go(z,y). Then we have that
Hz € Q:|G(h)| > 2t} < {z € Q:|Go(h)| >t} + [{z € Q: |G (h)] > t}],

where Go(h) and G (h) is defined similarly to G(h).
By Step 2 and the integral Minkowski’s inequality, we have
1Go(R)17

{z € Q:|Go(h)| >t} < t—“”)
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I Jo XBo @ T (@ = IRyl

< -
_ Ualy |0z = y)l*d2) “T(y)xs, (w)dyl*
< -

|h SLs(Q)HFXBV”SLI(Q)

= e

and
||FXBV||L1(Q)/ |z| N2 dr = CLP.
B,

On the other hand,
1Goo (ML) <l /QXBs(ﬂf —y)l(z = y)|h(y)|dy || L=()

< / () Pdy)t I / x5 (@ — )T — )" dy) ¥ ey
I

A

rolITxng ||LS/(RN)7

where s’ = 5 if s > 1, if not, s’ = oo.

Since
— a)s’ L a—N
||PXBg||Ls'(RN) — [/RN\B |x|( N+2a) dz]¥ = Co®+ |
1
by choosing v = (m)m—?7 then

1Goo (M) || o) < 2,

that means
H{x € Q:|Gux(h)| >t} = 0.
With this v, we have that

2sa

||h||SLS oV 1Pl L) v
Q) Oy ( ))r _

{z € Q:[G(h)| > 2t} < O——— < ;

The argument of (i) and (ii7) with r > s follows by the Marcinkiewicz In-
terpolation Theorem. The proof completes. O

Proof of Theorem 1.1. Let h € X and w such that

h = w'PG(h)"?, (4.8)
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Whelrfep':pilifp>1,p':ooifp:1.

1 1 .
-+-<1 with r<o
q T

since G(h) > 0, we have

[ emars [ eman, < Inluw 160 e,

If r = 00, then

Awasmmwwwmm

If
11,2 .
s<.+% with s>1 or
1,2 . _
1<-+% with s=1 or
12 . _
S< & with r = 400,

by (4.8) and Lemma 4.1, for some C' > 0,

HWWWSCWWSCVQW@WWMW’
Q

For 1 < s < o0, if

s <p,
one gets
G < O [ wan) (| Gy ao) 5
and if
s=7p,
then
quwuscwxmmﬂmAwmg
Then if /
P> P
~p(p —s)

we derive that

IG(h)|| . < C/wdaz.
Q

Together with (4.10), we have

J/G(h)d:c < Ca/wd:c,
0 0

22
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that is (4.3). We apply Corollary 4.1 to obtain of there exists a weak solution
of (1.3).

In case (i), 1 <p <
and s =p/, (4.9-4 15) hold

In case (ii), p > s and ¢ >
hold;

— implies p’ > 2L. Then combining ¢ = 1, r = oo

2ap+N Then take r = ¢’ and s = p/, (4.9-4.15)

In case (iii), p = NiVQa and ¢ > 1. Then take r = q%l and s = ﬁ]\im
(4.9-4.15) hold. O
5 The particular case A = d,,
In this section, our purpose is to find solutions to (1.3).
We introduce following existence theorem:
Theorem 5.1 Let p > 0 and A € M(Q) with G(A) >0
Assume that
GGP(N) < CyG(N), a.e. in (5.1)
where Cy > 0. )
(@) If p > 1, for o € (0,(”771)(1%00)F], problem (1.3) admits a positive
solution u € LY(Q) N LP(Q) such that
oG(\) + 0?GGP(\) < u(z) < oG(N) + (%)%—PGGP(A). (5.2)
it) If p = 1 and Cy < 1, then problem (1.3) admits a positive solution
u € L'(Q) N LP(Q) such that
oG(A\) + 0GG(N) < u(z) < oG(N) + N C GGP(N). (5.3)
—Co

(133) If p € (0,1), for any Cy < co and any o > 0, problem (1.8) admits a
positive solution v € LY(Q) N LP(Q) such that

oG(N\) + 0?GG(N) < u(z) < oG(N\) + 0P(a?1Cy + 1)T2GGP (). (5.4)

Proof. Let
uy =0G(N), w3 =0G(\) 4+ o?GGP(N) (5.5)

and
up, = 0GA\) +G(ub_;), neN (5.6)

By monotone iteration, see Theorem 4.2 in [19], problem (1.3) admits a
solution if there is a super solution u, that is,

u > G(u?) +oG(N) a.e. in Q. (5.7)
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To this end, let
u = ta?G(GP (X)) + aG(N),

by (5.1), then
ur < (Cota? + 0)G(N). (5.8)

Then by (5.8) and (5.1), there exists t > 0 such that
G(uf) + oG(N) < (Coto? 4+ o)PGGP () + 0G(N) < uy. (5.9)
Then (5.9) holds if there exists ¢ > 0 such that
(CotoP 1+ 1)P < t. (5.10)
If p>1and Cyo?™! < (pTTl)pfli, (5.10) holds for ¢ = (;£5)P.

If p=1and Cy <1, (5.10) holds for t = ﬁ

If p < 1, (5.10) holds for t = (Cyo?~! 4 1)% where Cy > 0. Then we finish
the proof. O

Remark 5.1 The solution v, obtained by the sequence (5.5) and (5.6), is
the minimal solution, that s,

w>v in RN,
for any solution u of 1.5.
Remark 5.2 In the case of p € (0,1), we observe that in the behavior (5.4),
oP(a?1Cy + 1)ﬁ = (Co+ Ul_p)ﬁ > C'Ol%p

and ,
o?(c" 'Co+ 1)T7 = C ", as o — 0.
So the behavior (5.4) is not so sharp.

We note that the domain 2 is not necessary to be bounded in Theorem
5.1. In case of a =1 and = RY_ it was built the equivalence among (4.3),
(5.1) and the Riesz capacity or Bessel capacity, see [1]. The key step is to
build the equivalence between (5.1) and

/ Ih[PdA < c/ AR, h e CZ(RY).
RN RN

However, it is no easy to obtain similarly estimate
[ mpix<e [ armp. e crmy)
RN RN
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for a € (0,1).
In particular, for o € (0,1), @ = RY and 1 < p < N/p, it was built the
equivalence between (5.1) and

A(E) < C cap(E, W),
where C' > 0 and cap(F, W*P) is the Riesz capacity defined by
cap(E,W*P) = inf{||ul[f, : T*u>1on E,u>0,ue LP}. (5.11)

See [16] for details.
Now we consider the application of Theorem 5.1 in bounded domain.

Lemma 5.1 Suppose that ) is an open, bounded and smooth domain of RY,
p >0 and X € M () with \(Q) = 1. If

N

< — 5.12
N on (5.12)

then G(\) € LY(Q), and there exists C = C(N,a, 3,\, Q) > 0 such that
GGP(\) < CG(N), ae.in €. (5.13)
Proof. By Jensen’s inequality with A(Q2) = 1,

@wz%ﬁmww@Vgémmww@,

which, combining (2.11), implies that
60 < [ [ GGl 6 NGy

1
< dyd\
- /Q xz/bf—le R T )

< C’/QG(x, 2)d\(z)
= CG(),

where [, |mfy|1N_2°‘ + +—=dy is bounded by (5.14). O

ly—=z|

In particular, if A\ = d,,, the behavior of the solution obtained by Theorem
5.1 is controlled by G(A) and GG? (). Therefore, we have to do estimate of
the behavior of GG”(\).
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Lemma 5.2 Assume that € is an open, bounded and smooth domain of R,
xo € Q and X = 0y If

0<p< (5.14)

N —2a’
then there exists a positive constant C' = C(N,a, A\, Q) > 1 and such that
: 2a N

pr < (N72a’ N72a)’

1
- < GGP(\)|x — x| 20TV =29P < O in Bi(xo) \ {x0}, (5.15)
ifp= 5%
1
5 S GGp(}\)(_ h’l‘l’ — .To‘)il S C, n Br<X0) \ {Xo}, (516)
: 2c
fp < §5a
1
- <GGP(N) < C, in Bi(xo) \ {x0}, (5.17)
where r = 7min{lf($°)}.
Proof. Step 1. the case of NQ_O‘M <p< N]_VQa. Since G(z,y) < I'(z — y)

and G(\) = G(z, ), then for x # x,

GG () < C [ (m0) gmaiv=e yraaiv=sms 4

_ 1 1
- CfBD(O) |z—zo—y|N 2 |y|(N—20)p dz

D (5.18)

< C|.’L' _ xQ‘Zoz—(N—ZOz)p(C_'_ fl\zfzo\ SQa—l—(N—Za)pdS)
< C|.’L' _ xo‘Zoz—(N—Zoz)p’

where D = sup{|z — y|,z,y € Q} < 0.

On the other hand, for z € B, (x¢) with r = d(z)/4,
G(z,x9) > CT(z — x0)
and
GGP<SL’) Z CfBr(!L'O) ‘yix‘lN—Qa |y_$0|(1N72a)p dx

_ 1 1
o CfB'r(O) |1'7$07y‘N_2a ‘yl(N72a)p dx (5 19)

> C|.T _ xo‘Qaf(N72a)p(C_|_ fl\w—rxo\ S2a717(N72a)pd8)

> C|l‘ _ $0|2a7(N72a)p

9

for some C' > 0.
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Step 2. For p = 52%-. Then (5.18) becomes

GGP(z) < C+ /x_m s 'ds < C(1+41In|z — z|)
1

and (5.19) becomes

GGP(z) > C + / s7lds < C(1+ In |z — o)),
1

2
N-—2a"

Indeed, for x € B,(xg) with r = M, by h'older inequality

Step 3. For p < We prove that fQ |yfm|1N_2°‘ ‘yixo‘(lN,Qa)p dy is bounded.

1 1
dy
/;%(xo) ly — x|N=2e |y — gp|(N=200p

< 1 1 p
1
= dy +/ dy
/]-;4»«(1) |y — 1‘|(N—2a)(p+1) Bar(z0) |y — :L‘O|(N—2a)(p+1)
< 00,
since (N —20)(p+1) < N, that is, p < 2%
]

Proof of Theorem 1.2 and Theorem 1.3. The existence of solution to
(1.3) with A = §,, follows Theorem 5.1 and Lemma 5.1 under the assumption
of o > 0 small enough and p # 1. Also the behavior of the solution near x
should be (5.2) for p > 1 and (5.4) for p € (0, 1). Combining Lemma 5.2 and
for x € Q, by (2.10)

C(N,a)

|N—20¢

0< — Gz, z0) = d(z, 20) < C(N, a)d(zo) N2,

|x —

we have that the result. OJ

We note here that it is not able to assume that C' < 1 in the estimate

(5.13) as the request of Theorem 5.1 for the case of p = 1. Therefore, in the

following we put some small number A as the coefficient of the power source
of (1.9), to make that the monotone iteration converges. That is,

Theorem 5.2 Let A € M(Q) with G(\) > 0. If there exists some Cy > 0
such that
GG(\) < CoG(N), ae. in €, (5.20)
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and ACy < 1, then for any o > 0 problem (1.9) admits a positive solution
u € LY(Q) such that

oA

oG +oACE() < u(x) < oG + T3~

GG(N). (5.21)

Proof. Let ug = 0G(A), uy = 0G(A) + cGAG(N) and
Uy, = oG(A\) + G(Au,—1), neN.
Proceed as the proof of Theorem 5.1 and (5.10) becomes
ACot +1 < t,

which implies the result if ACy < 1. O

Proof of Theorem 1.4. The existence of solution to (1.9) with A = §,,
follows Theorem 5.2 and Lemma 5.1 under the assumption of A > 0 small
enough and p = 1. Combining Lemma and Lemma 5.2 and for = € €2,

C(N,«)

0< ——55
|z — 2| N2

— G(z,20) = ¢(x,10) < O(N, a)d() N2,

we have that the asymptotic behavior.
Prove the uniqueness. Let A\; and ¢ be the first eigenvalue and respond-
ing eigenfunction respectively, of

(—A)*u = A\u, in €,
u(z) =0, on Of.

Then the coefficient A satisfies A < Ay, if not,then by computing directly, we
have that

¢1 (Io) =0,
which is impossible with ¢; > 0 in 2.

We know the minimal solution v of (1.9) with A = §,, is obtained by
the sequence uy = 0Gd,, and u,, = AG((up-1)+) + 0Gd,, n € N. Let u be
another solution of (1.9) with A = §,,, then we have u > v. We assume that
uZ v,

0<u—v=AG(u—v),
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which multiples by (; and integrate over €2 to get that

/Q(u—v)cpl _ A/ngl((}(u—v)
= A [ =08

A
DY Q<U_U)901
< [w-vea.
Q
which is impossible. O

6 Asymptotic behavior of the solutions

In the first of this section, we do some estimate for solutions of (1.3) and
some type of uniqueness. Let u and v be two solutions of (1.3) and v be the
minimal one obtained in section§5. For A\ = §,,, by regularity result we have
know u, v are continuous in Q \ {0}. See [10] for the regularity.

Proposition 6.1 Suppose that € is an open, bounded and smooth domain

of RV (N >2), 0<p< 525 and A = 0, with z € Q.

Let u be a solution of

u=G) + G(0d,,)

such that there exists T < % having

lim sup u(x)|z — xo|” < o0. (6.1)
T—IQ
Then we have that
lim u(z)|z — 20|V 72* = C(N, a)o. (6.2)
T—TQ

Proof. We divide the proof into several steps.
Step 1: there exists (x,) such that

Tp, — Tg as n — +oo
and

. C2)(2)

oo ()

= 0. (6.3)
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By (6.6), there exist 75 € [N — 2« %) and C; > 0 such that
u(z)|r —zo|® < Cp, zeRY (6.4)

and a sequence (x,) such that z,, — zo as n — oo and

w(xy)|zn — 20| > Oy, (6.5)
where C1,Cy > 0 and € € [0,min{ryp — N + 2q, M}] small enough.
Then

G(ub)(xy, 1 1
(qu)(x ) S C‘l’n _x0|7'06/ ~— dy
() o |Tn =y 72 |z — ylPmo
S C‘l’n . x0|2a+(17p)7—076
— 0 as n— oo,
since 2a + (1 —p)1p — € > 0.
Step 2: to prove
lim sup u(z)|z — 20|/¥ 2% < oo. (6.6)
T—xT0
If (6.4) hold for 75 > N — 2a, from Step 1 and
| B |, Gloe)(w)
where we see that Glos
lim (%0 (@n) _ (6.7)
which implies that
lim u(w,)|z, — zo|V 2* = C(N, a)o. (6.8)
n—o0

Now we obtain a contradiction between (6.8) and (6.5). So 7o = N — 2a.
Step 3: to prove that

N—2«a
ol

lim u(z)|x —x = C(N, a)o. (6.9)

T—x0

We see the fact u(z) > G(0d,,), which implies that

liminf u(z)|z — 2o|" 2 = C(N, a)o. (6.10)

T—xT0

30



By (6.6) and (6.9),

i S Clz— ool [y e e Y
< Oz — oV -PIN=2) (6.11)
—0 as |x—x¢| —0.

Now we assume that there is a sequence (z,) such that

lim u(zy)|x, — 20|V 72 > C(N, a)o. (6.12)

n—oo

From Lemma (6.11) and

Gui)(@n) | G(00m)(wn)

1=
we see that Glos
lim (700 (@n) _ (6.13)
which implies that
lim u(zy)|x, — 20|V 72 = C(N, a)o. (6.14)
n—o0
Now we obtain a contradiction between (6.14) and (6.12). O

Finally, we see a weak version of uniqueness for (1.3).

Proposition 6.2 Suppose that € is an open, bounded and smooth domain

of RV (N >2), 1 <p< 2= and X\ = &, with o € Q. Assume that v is

the minimal solution of (1.3) such that

v < coG(d,) in RY
and w is a solution of (1.3) such that
0 <u(z) <C(0)G(0z)(x), =€ Q\{xo}, (6.15)

where C(o) — 0 as 0 — 0.
If o is small, then
u=v in RN
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Proof. We assume that

uZEv
We know that
0<u—uv=Gu(z)—v"(z)] <G’ *(u—rv)),
and o
w=u—v<G) <
|z — z|(
where (N72°]<f)p —2a

N—2a)p—2a’
+ %O‘ < 1. Then there exists r > 1 such that

1 2
r[(N —2a)p —2a) < N and —+Wa < 1.
r
We use Lemma 4.1 with r and s = L

Q

1,2
-t

2|

> 1 to obtain that
[wllzr@) < IGWP ™ w)|Lr) < el w
for some constant ¢ independent o.

By holder inequality,

Ls(2)»

[~ wll oy < fluP M ez g 10l ),

where by (6.15),

(6.16)

(6.17)

up—l < CC<U>p_1
- ‘x — qjo‘(N*%‘)(p*l) ’
= % and

and it follows from -*- (N —2a)(p—1) < 2« that

N
N -2 —-1)— <N
then we have that

1
uP 7| s < cC(a)p*1 /
” ”Lr—s (Q) 0

dx < cC(o)P™?
7 — g V2D = @
where ¢ > 0 independent of o.

(6.18)
From (6.17), (6.18) and (6.16), we have that
lwllzr@) < cClo) ]l @),
which is impossible if ¢cC(0)P~! < 1 and |jw||pr@q) # 0 O
For p € (0,1), we have following results:
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Theorem 6.1 Under the hypothesis of Theorem 5.1, we assume that p €
(0,1) and wy is the positive solution of

{ (—A)*u=wuP, in £, (6.19)

u(z) =0, in RN\ Q.

Then for any o > 0, problem (1.3) admits a solution u € L*(Q2) N LP(£2)
such that

wo+0GA) < u < wo+0G\) + 0 (6P 'Co+ 1) GGP(N)  in RY, (6.20)
where C' > Cy and v is the minimal solution of (1.3).
Proof of Theorem 6.1. Let
up=wo and u; =oG(\) + G(uf) (6.21)

and
up, = 0GA\) +G(ul_y), neN (6.22)

We first to prove that
Upi1 > Up, N €N, r e RV,

We observe that

Uy G(wg) + 0G(N)
= wo+ oG(N)

Ugp-

v

We assume u,, > u,,_1, then we prove that u, 1 > u, by the fact of
Ups1 — Up = G(ul —u® ) > 0.

problem (1.3) admits a solution generated by u, defined (6.21) and (6.22)
if there is a super solution u, that is,

u> G(a") +0G(A) ae in Q. (6.23)
To this end, let
ur = wo + ta?G(GP (X)) + oG (M),

by (5.1), then
ur < wp + (Cota® 4+ 0)G(N). (6.24)
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Then by (6.24) and (5.1), there exists ¢ > 0 such that

G(u)) + 0G(N) < (Coto? + 0)PGGP (X)) + 0G(N) < uy, (6.25)

where we use the fact of

(a+bP <a?+b, ab>0, pe(0,1).

Then (6.25) holds if there exists ¢ > 0 such that

(CotoP P+ 1)P < t. (6.26)

Since p < 1, (6.26) holds for t = (Coo?™! + 1)% where Cy > 0. Then we

finish the proof. O
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