Dynamic Combination of Automatic Speech Recognition Systems by Driven Decoding
Résumé
Combining automatic speech recognition (ASR) systems generally relies on the posterior merging of the outputs or on acoustic cross-adaptation. In this paper, we propose an integrated approach where outputs of secondary systems are integrated in the search algorithm of a primary one. In this driven decoding algorithm (DDA), the secondary systems are viewed as observation sources that should be evaluated and combined to others by a primary search algorithm. DDA is evaluated on a subset of the ESTER I corpus consisting of 4 hours of French radio broadcast news. Results demonstrate DDA significantly outperforms vote-based approaches: we obtain an improvement of 14.5% relative word error rate over the best single-systems, as opposed to the the 6.7% with a ROVER combination. An in-depth analysis of the DDA shows its ability to improve robustness (gains are greater in adverse conditions) and a relatively low dependency on the search algorithm. The application of DDA to both A* and beam-search-based decoder yields similar performances.
Domaines
Multimédia [cs.MM]Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...