Evaluation of Naive Evidential Classifier (NEC): Application to semolina milling value - Archive ouverte HAL
Communication Dans Un Congrès Année : 2012

Evaluation of Naive Evidential Classifier (NEC): Application to semolina milling value

Résumé

We introduce the notion of naive evidential classifier. This classifier, which has a structure mirroring the naive Bayes classifier, is based on the Transferable Belief Model and use mass assignments as its uncertainty model. This new method is based achieves more robust inferences, mainly by explicitly modeling imprecision when data are in little amount or are imprecise. After introducing the model and its inference process based on Smet's generalized Bayes theorem (GBT), we specify some possible methods to learn its parameters, based on the Imprecise Dirichlet Model (IDM) or on predictive belief functions. Some experimental results on an agronomic application are then given and evaluated.
Fichier principal
Vignette du fichier
FLINS_2012.pdf (383.85 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00745590 , version 1 (25-10-2012)

Identifiants

  • HAL Id : hal-00745590 , version 1

Citer

Yosra Mazigh, Boutheina Ben Yaghlane, Sébastien Destercke. Evaluation of Naive Evidential Classifier (NEC): Application to semolina milling value. Scalable Uncertainty Management (SUM 2012), Sep 2012, Marburg, Germany. pp.619-624. ⟨hal-00745590⟩
102 Consultations
128 Téléchargements

Partager

More