On adaptive wavelet estimation of a class of weighted densities - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2013

On adaptive wavelet estimation of a class of weighted densities

Résumé

We investigate the estimation of a weighted density taking the form $g=w(F)f$, where $f$ denotes an unknown density, $F$ the associated distribution function and $w$ is a known (non-negative) weight. Such a class encompasses many examples, including those arising in order statistics or when $g$ is related to the maximum or the minimum of $N$ (random or fixed) independent and identically distributed (\iid) random variables. We here construct a new adaptive non-parametric estimator for $g$ based on a plug-in approach and the wavelets methodology. For a wide class of models, we prove that it attains fast rates of convergence under the $\mathbb{L}_p$ risk with $p\ge 1$ (not only for $p = 2$ corresponding to the mean integrated squared error) over Besov balls. The theoretical findings are illustrated through several simulations.
Fichier principal
Vignette du fichier
weig-dens-est.pdf (708.58 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00714507 , version 1 (04-07-2012)
hal-00714507 , version 2 (28-02-2013)
hal-00714507 , version 3 (30-06-2013)
hal-00714507 , version 4 (05-05-2015)

Identifiants

  • HAL Id : hal-00714507 , version 2

Citer

Fabien Navarro, Christophe Chesneau, Jalal M. Fadili. On adaptive wavelet estimation of a class of weighted densities. 2013. ⟨hal-00714507v2⟩
387 Consultations
199 Téléchargements

Partager

More